skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polariton-polariton interaction beyond the Born approximation: A toy model study
Award ID(s):
2004287
PAR ID:
10231453
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Review A
Volume:
102
Issue:
6
ISSN:
2469-9926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate electroabsorption (EA) in organic semiconductor microcavities to understand whether strong light-matter coupling non-trivially alters their nonlinear optical [$${\chi }^{(3)}\left(\omega,{{{{\mathrm{0,0}}}}}\right)$$ χ ( 3 ) ω , 0, 0 ] response. Focusing on strongly-absorbing squaraine (SQ) molecules dispersed in a wide-gap host matrix, we find that classical transfer matrix modeling accurately captures the EA response of low concentration SQ microcavities with a vacuum Rabi splitting of$$\hslash \Omega \approx 200$$ Ω 200 meV, but fails for high concentration cavities with$$\hslash \Omega \approx 420$$ Ω 420 meV. Rather than new physics in the ultrastrong coupling regime, however, we attribute the discrepancy at high SQ concentration to a nearly dark H-aggregate state below the SQ exciton transition, which goes undetected in the optical constant dispersion on which the transfer matrix model is based, but nonetheless interacts with and enhances the EA response of the lower polariton mode. These results indicate that strong coupling can be used to manipulate EA (and presumably other optical nonlinearities) from organic microcavities by controlling the energy of polariton modes relative to other states in the system, but it does not alter the intrinsic optical nonlinearity of the organic semiconductor inside the cavity. 
    more » « less
  2. null (Ed.)
  3. Exciton-polariton lasers are a promising source of coherent light for low-energy applications due to their low-threshold operation. However, a detailed experimental study of their spectral purity, which directly affects their coherence properties, is still missing. Here, we present a high-resolution spectroscopic investigation of the energy and linewidth of an exciton-polariton laser in the single-mode regime, which derives its coherent emission from an optically pumped and confined exciton-polariton condensate. We report an ultra-narrow linewidth of 56 MHz or 0.24 µeV, corresponding to a coherence time of 5.7 ns. The narrow linewidth is consistently achieved by using an exciton-polariton condensate with a high photonic content confined in an optically induced trap. Contrary to previous studies, we show that the excitonic reservoir created by the pump and responsible for creating the trap does not strongly affect the emission linewidth as long as the condensate is trapped and the pump power is well above the condensation (lasing) threshold. The long coherence time of the exciton-polariton system uncovered here opens up opportunities for manipulating its macroscopic quantum state, which is essential for applications in classical and quantum computing. 
    more » « less