skip to main content

Title: Molecular polariton electroabsorption

We investigate electroabsorption (EA) in organic semiconductor microcavities to understand whether strong light-matter coupling non-trivially alters their nonlinear optical [$${\chi }^{(3)}\left(\omega,{{{{\mathrm{0,0}}}}}\right)$$χ(3)ω,0, 0] response. Focusing on strongly-absorbing squaraine (SQ) molecules dispersed in a wide-gap host matrix, we find that classical transfer matrix modeling accurately captures the EA response of low concentration SQ microcavities with a vacuum Rabi splitting of$$\hslash \Omega \approx 200$$Ω200meV, but fails for high concentration cavities with$$\hslash \Omega \approx 420$$Ω420meV. Rather than new physics in the ultrastrong coupling regime, however, we attribute the discrepancy at high SQ concentration to a nearly dark H-aggregate state below the SQ exciton transition, which goes undetected in the optical constant dispersion on which the transfer matrix model is based, but nonetheless interacts with and enhances the EA response of the lower polariton mode. These results indicate that strong coupling can be used to manipulate EA (and presumably other optical nonlinearities) from organic microcavities by controlling the energy of polariton modes relative to other states in the system, but it does not alter the intrinsic optical nonlinearity of the organic semiconductor inside the cavity.

more » « less
Award ID(s):
1654077 1955656
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

    more » « less
  2. Abstract

    We present the first unquenched lattice-QCD calculation of the form factors for the decay$$B\rightarrow D^*\ell \nu $$BDνat nonzero recoil. Our analysis includes 15 MILC ensembles with$$N_f=2+1$$Nf=2+1flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$a\approx 0.15$$a0.15fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valencebandcquarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element$$|V_{cb}|$$|Vcb|. We obtain$$\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}$$Vcb=(38.40±0.68th±0.34exp±0.18EM)×10-3. The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\chi ^2\text {/dof} = 126/84$$χ2/dof=126/84, which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict$$R(D^*) = 0.265 \pm 0.013$$R(D)=0.265±0.013, which confirms the current tension between theory and experiment.

    more » « less
  3. Abstract

    In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:

    Certifying that a list ofnintegers has no 3-SUM solution can be done in Merlin–Arthur time$$\tilde{O}(n)$$O~(n). Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n^{1.5})$$O~(n1.5)time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$O~(n1.5)and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$O~(n1.5)time).

    Counting the number ofk-cliques with total edge weight equal to zero in ann-node graph can be done in Merlin–Arthur time$${\tilde{O}}(n^{\lceil k/2\rceil })$$O~(nk/2)(where$$k\ge 3$$k3). For oddk, this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm-edge graph can be done in Merlin–Arthur time$${\tilde{O}}(m)$$O~(m). Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only countk-cliques in unweighted graphs, and had worse running times for smallk.

    Computing the All-Pairs Shortest Distances matrix for ann-node graph can be done in Merlin–Arthur time$$\tilde{O}(n^2)$$O~(n2). Note this is optimal, as the matrix can have$$\Omega (n^2)$$Ω(n2)nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\tilde{O}(n^{2.94})$$O~(n2.94)nondeterministic time algorithm.

    Certifying that ann-variablek-CNF is unsatisfiable can be done in Merlin–Arthur time$$2^{n/2 - n/O(k)}$$2n/2-n/O(k). We also observe an algebrization barrier for the previous$$2^{n/2}\cdot \textrm{poly}(n)$$2n/2·poly(n)-time Merlin–Arthur protocol of R. Williams [CCC’16] for$$\#$$#SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol fork-UNSAT running in$$2^{n/2}/n^{\omega (1)}$$2n/2/nω(1)time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.

    Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time$$2^{4n/5}\cdot \textrm{poly}(n)$$24n/5·poly(n). Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{2n/3}\cdot \textrm{poly}(n)$$22n/3·poly(n)time.

    Due to the centrality of these problems in fine-grained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution tonintegers can be done in Merlin–Arthur time$$2^{n/3}\cdot \textrm{poly}(n)$$2n/3·poly(n), improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{0.49991n}\cdot \textrm{poly}(n)$$20.49991n·poly(n)time.

    more » « less
  4. Abstract

    We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$poly(t)·n1/D-depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$poly(t)·ndue to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$D=1. We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$PH) is infinite and that certain counting problems are$$\#{\textsf{P}}$$#P-hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$O(n)depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$O(nln2n)corresponding to depth$$O(\ln ^3 n)$$O(ln3n). We also show a lower bound of$$\Omega (n \ln n)$$Ω(nlnn)for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$O(lnnlnlnn)(size$$O(n \ln n \ln \ln n)$$O(nlnnlnlnn)) using a different model.

    more » « less
  5. Abstract

    The notion of generalized rank in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. However, its efficient computation has not yet been studied in the literature. We show that the generalized rank over a finite intervalIof a$$\textbf{Z}^2$$Z2-indexed persistence moduleMis equal to the generalized rank of the zigzag module that is induced on a certain path inItracing mostly its boundary. Hence, we can compute the generalized rank ofMoverIby computing the barcode of the zigzag module obtained by restricting to that path. IfMis the homology of a bifiltrationFof$$t$$tsimplices (while accounting for multi-criticality) andIconsists of$$t$$tpoints, this computation takes$$O(t^\omega )$$O(tω)time where$$\omega \in [2,2.373)$$ω[2,2.373)is the exponent of matrix multiplication. We apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a moduleM, determine whetherMis interval decomposable and, if so, compute all intervals supporting its indecomposable summands.

    more » « less