skip to main content

Title: Investigation of the crystal structure of a low water content hydrous olivine to 29.9 GPa: A high-pressure single-crystal X-ray diffraction study
Abstract Olivine is the most abundant mineral in the Earth's upper mantle and subducting slabs. Studying the structural evolution and equation of state of olivine at high-pressure is of fundamental importance in constraining the composition and structure of these regions. Hydrogen can be incorporated into olivine and significantly influence its physical and chemical properties. Previous infrared and Raman spectroscopic studies indicated that local structural changes occur in Mg-rich hydrous olivine (Fo ≥ 95; 4883–9000 ppmw water) at high-pressure. Since water contents of natural olivine are commonly <1000 ppmw, it is inevitable to investigate the effects of such water contents on the equation of state (EoS) and structure of olivine at high-pressure. Here we synthesized a low water content hydrous olivine (Fo95; 1538 ppmw water) at low SiO2 activity and identified that the incorporated hydrogens are predominantly associated with the Si sites. We performed high-pressure single-crystal X-ray diffraction experiments on this olivine to 29.9 GPa. A third-order Birch-Murnaghan equation of state (BM3 EoS) was fit to the pressure-volume data, yielding the following EoS parameters: VT0 = 290.182(1) Å3, KT0 = 130.8(9) GPa, and K′T0 = 4.16(8). The KT0 is consistent with those of anhydrous Mg-rich olivine, which indicates that such low more » water content has negligible effects on the bulk modulus of olivine. Furthermore, we carried out the structural refinement of this hydrous olivine as a function of pressure to 29.9 GPa. The results indicate that, similar to the anhydrous olivine, the compression of the M1-O and M2-O bonds are comparable, which are larger than that of the Si-O bonds. The compression of M1-O and M2-O bonds of this hydrous olivine are comparable with those of anhydrous olivine, while the Si-O1 and Si-O2 bonds in the hydrous olivine are more compressible than those in the anhydrous olivine. Therefore, this study suggests that low water content has negligible effects on the EoS of olivine, though the incorporation of water softens the Si-O1 and Si-O2 bond. « less
Authors:
; ; ; ; ;
Award ID(s):
1722969
Publication Date:
NSF-PAR ID:
10231477
Journal Name:
American Mineralogist
Volume:
105
Issue:
12
Page Range or eLocation-ID:
1857 to 1865
ISSN:
0003-004X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grain boundaries in mantle minerals are of critical importance to geophysical and geochemical processes of the Earth’s interior. One of the fundamental issues is to understand how the water (H2O) component influences the properties of grain boundaries in silicate materials. Here, we report the results of the structure and stability of several tilt grain boundaries in Mg2SiO4 forsterite over the pressure range 0 to 15 GPa using density functional theory-based first-principles simulations. The results suggest greater energetic stability and hydration-driven volume collapse (negative excess volume) at zero pressure for the majority of hydrous grain boundaries relative to the anhydrous (dry) ones. All the hydrous grain boundaries become increasingly favorable at elevated pressures as the calculated hydration enthalpy systematically decreases with increasing pressure. The hydrous components at the interfacial regions are predominantly in the hydroxyl form and, to a lesser extent, in the molecular H2O form. Their calculated ratio ranges from 1.6 to 8.7 among the different grain boundary configurations. Our structural analysis also reveals that the hydroxyls are bound to either both Mg and Si or to Mg only. In comparison, the molecular species are bound only to Mg sites. Besides direct oxygen-hydrogen bonding, intermolecular hydrogen bonding becomes importantmore »with compression. On the basis of our results, we suggest that local atomic rearrangements caused by dissociative adsorption of water facilitate efficient compaction of the boundary interfaces, which, in turn, results in greater relative stability of hydrous grain boundaries. This means that water prefers to be incorporated within the grain boundaries over the bulk of silicate materials.« less
  2. Water (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1-xFexSiO3 and Mg2(1-x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000 to 4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt+water solution is negative at low pressures and becomes zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhancesmore »the melt electrical conductivity in a way that differs from electrical conduction in the bulk water. The speciation of the water component varies considerably from the bulk water structure as well. Water is dissolved in melts mostly as hydroxyls at low pressure and as -O-H-O-, -O-H-O-H- and other extended species with increasing pressure. On the other hand, the pure water behaves as a molecular fluid below 15 GPa, gradually becoming a dissociated fluid with further compression. On the basis of modeled density and conductivity results, we suggest that partial melts containing a few percent of water may be gravitationally trapped both above and below the upper mantle-transition region. Moreover, such hydrous melts can give rise to detectable electrical conductance by means of electromagnetic sounding observations.« less
  3. The degree to which the Earth’s mantle stores and cycles water in excess of the storage capacity of nominally anhydrous minerals is dependent upon the stability of hydrous phases under mantle-relevant pressures, temperatures, and compositions. Two hydrous phases, phase D and phase H, are stable to the pressures and temperatures of the Earth’s lower mantle, suggesting that the Earth’s lower mantle may participate in the cycling of water. We build on our prior work of density functional theory calculations on phase H with the stability, structure, and bonding of hydrous phases D, and we predict the aluminum partitioning with H in the Al 2 O 3 -SiO 2 -MgO-H 2 O system. We address the solid solutions through a statistical sampling of site occupancy and calculation of the partition function from the grand canonical ensemble. We show that each phase has a wide solid solution series between MgSi 2 O 6 H 2 -Al 2 SiO 6 H 2 and MgSiO 4 H 2 -2 δ AlOOH + SiO 2 , in which phase H is more aluminum rich than phase D at a given bulk composition. We predict that the addition of Al to both phases D and Hmore »stabilizes each phase to higher temperatures through additional configurational entropy. While we have shown that phase H does not exhibit symmetric hydrogen bonding at high pressure, we report here that phase D undergoes a gradual increase in the number of symmetric H-bonds beginning at ∼30 GPa, and it is only ∼50% complete at 60 GPa.« less
  4. Abstract As a major nominally anhydrous mineral (NAM) in the Earth’s upper mantle, orthopyroxene could host up to several hundred parts per million H2O in its crystal structure and transport the H2O to the deep Earth. To study the effect of structural H2O on the elasticity of orthopyroxene, we have measured the single-crystal elasticity of Mg1.991Al0.065Si1.951O6 with 842–900 ppm H2O and 1.64 ± 0.20 wt% Al2O3 at ambient conditions using Brillouin spectroscopy. The best-fit single-crystal elastic moduli (Cijs), bulk (KS0), and shear (G0) modulus of the hydrous Al-bearing orthopyroxene were determined as: C11 = 235(2) GPa, C22 = 173(2) GPa, C33 = 222(2) GPa, C44 = 86(1) GPa, C55 = 82(1) GPa, C66 = 82(1) GPa, C12 = 75(3) GPa, C13 = 67(2) GPa, and C23 = 49(2) GPa, KS0 = 111(2) GPa, and G0 = 78(1) GPa. Systematic analysis based on the results presented in this and previous studies suggests that the incorporation of 842–900 ppm H2O would increase C13 by 12.0(7)% and decrease C23 by 8.6(8)%. The effects on C11, C22, C33, C44, C66, KS0, and VP are subtle if not negligible when considering the uncertainties. The C55, C12, G0, and VS are not affected by the presencemore »of structural H2O. Although laboratory experiments show that Fe,Al-bearing orthopyroxenes can host up to 0.8 wt% H2O in its structure, future high-pressure-temperature elasticity measurements on orthopyroxene with higher H2O content are needed to help better quantify this effect.« less
  5. In this study, we use f irst-principles molecular dynamics simulations to explore the behavior of anhydrous aluminosilicate melt with a stoichiometry of NaAlSi2O6 up to pressures of ∼30 GPa and temperatures between 2500 and 4000 K. We also examine the effect of water (∼4 wt % H2O) on the equation of state and transport properties of the aluminosilicate melt and relate them to atomistic scale changes in the melt structure. Our results show that water reduces the density and bulk modulus of the anhydrous melt. However, the pressure derivative of the bulk modulus of the hydrous melt is larger than that of the anhydrous melt. The pressure dependence of the transport property exhibits an anomalous behavior. At a pressure of ∼12 GPa, anhydrous aluminosilicate melts exhibit maxima in diffusion and minima in viscosity. Dissolved water in melts also affects both diffusion and viscosity. In hydrous aluminosilicate melts, the maxima in diffusion and the minima in viscosity occur at ∼14 GPa. The anomalous behavior of transport properties is related to the pressure-induced changes in the melt structure. At shallower depths, i.e., up to 100 km, relevant for subduction zone settings, the lower density compounded by the lower viscosity of hydrous aluminosilicatemore »melts is likely to provide buoyancy for upward migration. At greater depths of ∼180−200 km, greater compressibility of the hydrous aluminosilicate melts together with the minimum viscosity could hinder magma migration and may explain the presence of a partial melt layer at the lithosphere−asthenosphere boundary.« less