Abstract Dynamical mechanisms for the summer Eurasian circulation trend pattern are investigated by analyzing reanalysis data and conducting numerical model simulations. The daily circulations that resemble the Eurasian circulation trend pattern are identified and categorized into two groups based on surface warming signal over central and eastern Europe. In the group with large warm anomaly, the upper-level circulation takes on a wave packet form over Eurasia, and there are enhanced latent heating anomalies centered over the North Sea and suppressed latent heating anomalies over the Caspian Sea. The numerical model calculations indicate that these latent heating anomalies can excite an upper-level circulation response that resembles the Eurasian circulation trend pattern. Additional analysis indicates that trends of these two latent heating centers contribute to the long-term circulation trend. In the weak warm anomaly group, the circulation pattern takes on a circumglobal teleconnection (CGT) pattern, and there is no heating signal that reinforces the circulation. These results indicate that not all CGT-like patterns excite temperature anomalies that are persistent and in phase with the trend pattern, and that quasi-stationary forcings, such as the latent heating anomalies, play an important role in driving the boreal summer circulation anomaly that accompanies the strong and persistent surface temperature signal.
more »
« less
Four distinct Northeast US heat wave circulation patterns and associated mechanisms, trends, and electric usage
Abstract Northeastern US heat waves have usually been considered in terms of a single circulation pattern, the high-pressure circulation typical of most heat waves occurring in other parts of the world. However, k-means clustering analysis from 1980–2018 shows there are four distinct patterns of Northeast heat wave daily circulation, each of which has its own seasonality, heat-producing mechanisms (associated moisture, subsidence, and temperature advection), and impact on electricity demand. Monthly analysis shows statistically-significant positive trends occur in late summer for two of the patterns and early summer for a third pattern, while the fourth pattern shows a statistically significant negative trend in early summer. These results demonstrate that heat waves in a particular geographic area can be initiated and maintained by a variety of mechanisms, resulting in heat wave types with distinct impacts and potential links to climate change, and that pattern analysis is an effective tool to distinguish these differences.
more »
« less
- Award ID(s):
- 1901352
- PAR ID:
- 10231544
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) that captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity alone can produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea ice albedo and thermodynamic effects under CO2forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality. Significance StatementUnder increasing concentrations of atmospheric greenhouse gases, the strongest Arctic warming has occurred during early winter, but the reasons for this seasonal pattern of warming are not well understood. We use experiments in both simple and complex models with certain sea ice processes turned on and off to disentangle potential drivers of seasonality in Arctic warming. When sea ice melts and open ocean is exposed, surface temperatures are slower to reach the warm-season maximum and slower to cool back down below freezing in early winter. We find that this process alone can produce the observed pattern of maximum Arctic warming in early winter, highlighting a fundamental mechanism for the seasonality of Arctic warming.more » « less
-
Abstract This study investigates the mechanism behind the recent boreal summer circulation trend pattern and associated high surface temperature anomalies over the Russian Far East. This circulation pattern includes a prominent anticyclone over the Kamchatka Peninsula where heat extremes have been trending upward. Observational analysis and numerical model simulations indicate that latent heating anomalies centered over Yakutia, west of Kamchatka Peninsula, can excite this anticyclone and the downstream circulation trend pattern. However, this anticyclone alone is insufficient for generating the anomalously high temperature over the region. Instead, the high temperature emerges when there is an upstream precursor that resembles the Eurasian circulation trend pattern. Warm advection by this upstream circulation initiates a positive temperature anomaly over the Russian Far East, one week prior to the onset of the anticyclone in this region. As this anticyclone develops, the temperature anomalies further intensify by adiabatic warming and shortwave radiative heating. If upstream circulation anomalies are opposite to those of the Eurasian trend pattern, the initial temperature over the Russian Far East is anomalously negative. As a result, the adiabatic warming and shortwave radiative heating within this anticyclonic region are unable to bring the temperature to an extreme condition. These findings indicate that the temperature extremes over the Russian Far East are contributed by a combination of remote and local circulation forcings and provide insights into subseasonal forecasts of heat waves over this region.more » « less
-
Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor.more » « less
-
Abstract Observations of ocean surface waves at three sites along the northern coast of Alaska show a strong correlation with seasonal sea ice patterns. In the winter, ice cover is complete, and waves are absent. In the spring and early summer, sea ice retreats regionally, but landfast ice persists near the coast. The landfast ice completely attenuates waves formed farther offshore in the open water, causing up to a two‐month delay in the onset of waves near shore. In autumn, landfast ice begins to reform, though the wave attenuation is only partial due to lower ice thickness compared to spring. The annual cycle in the observations is reproduced by the ERA5 reanalysis product, but the product does not resolve landfast ice. The resulting ERA5 bias in coastal wave exposure can be corrected by applying a higher‐resolution ice mask, and this has a significant effect on the long‐term trends inferred from ERA5.more » « less
An official website of the United States government
