Abstract In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty‐five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within‐sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The last biotic frontier for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor. Abstract in Spanish is available with online material.
more »
« less
Assessing the role of habitat and species interactions in the population decline and detection bias of Neotropical leaf litter frogs in and around La Selva Biological Station, Costa Rica
Worldwide, amphibian populations have been declining rapidly. This decline can be attributed to many factors including climate change, pesticide exposure, and emerging infectious diseases, among other important factors, but few studies have examined the influence of species interactions. In this study, we examined how habitat factors and co-occurring avian and mammalian species, as well as humans, exert direct and indirect effects on Neotropical amphibian population dynamics. We further examined how these habitat and species interactions could affect our ability to reliably detect amphibian presence to robustly estimate population trends. We conducted amphibian visual encounter surveys at 26 randomly selected sites in the La Selva Biological Station, in northeastern Costa Rica, as well as 26 sites across five additional forest fragments in the region. Furthermore, we used camera traps to collect data on avian and mammalian communities and human visitation at those amphibian survey plots. From these data, we were able to estimate species occupancy probabilities for leaf litter frogs across sites and their relationships to habitat and interspecific species interaction covariates. We also conducted an experiment with plastic model frogs to estimate detection probabilities when a population is known to occur at a site with certainty. Our results suggested that strawberry poison dart frog ( Oophagapumilio ) occupancy was positively related to secondary forest and their detection was negatively related to increasing air temperatures at the times of the surveys. Leaf litter frog occupancy was negatively related to core La Selva sites and human detections at sites, yet their detection was positively related to human trail presence, which might be related to reduced leaf litter cover due to heavy trampling. Our experimental surveys suggested that Neotropical leaf litter frog communities are difficult to detect when present and future studies should explicitly account for this detection bias to effectively monitor population trends.
more »
« less
- Award ID(s):
- 1712757
- PAR ID:
- 10231557
- Date Published:
- Journal Name:
- Neotropical Biology and Conservation
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2236-3777
- Page Range / eLocation ID:
- 143 to 156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Accurate estimates of survival are crucial for many management decisions in translocation programs. Maximizing detection probabilities and reducing sampling biases for released animals can aid in estimates of survival. One important source of sampling bias is an animal’s behavior. For example, individuals that are consistently more exploratory or active may be more likely to be detected visually. Behavioral traits can be related to survival after reintroduction, and because many pre‐release treatments aim to manipulate animal behavior, it is critical to tease apart relationships between behavior and detection probability. Here, we assessed the repeatability (intra‐individual consistency and inter‐individual variation) of behavioral traits for an endangered amphibian, the mountain yellow‐legged frog (Rana muscosa). Because new technological tools offer one potential solution for reducing sampling biases while increasing detection, we also tested whether a long‐range passive integrated transponder (PIT) tag reader could enhance surveys for these individuals after translocation into the wild. After confirming thatex situbredR. muscosaexhibit repeatable behavioral traits (repeatability = 0.25–0.41) and releasing these frogs (N = 196) into the wild, we conducted post‐release surveys visually and with the long‐range PIT tag reader. Integrating the long‐range reader into surveys improved detection probability four‐fold in comparison to visual surveys alone (~0.09 to ~0.36). Moreover, mark–recapture modeling revealed that tag reader detection probability was not biased toward detecting individuals of specific behavioral types, while visual detection was significantly related to behavioral traits. These results will enable a more accurate understanding of individual differences in post‐release success in translocations. This may be particularly important for amphibian species, which can be difficult to detect and are expected to increasingly be involved in human‐managed breeding and translocation programs due to their vulnerable conservation status.more » « less
-
Abstract Variable harlequin frogsAtelopus variushave declined significantly throughout their range as a result of infection with the fungal pathogenBatrachochytrium dendrobatidis(Bd). The Panama Amphibian Rescue and Conservation Project maintains an ex situ population of this Critically Endangered species. We conducted a release trial with surplus captive-bredA. variusindividuals to improve our ability to monitor frog populations post-release, observe dispersal patterns after freeing them into the wild and learn about threats to released frogs, as well as to determine whether natural skin toxin defences of frogs could be restored inside mesocosms in the wild and to compare Bd dynamics in natural amphibian communities at the release site vs a non-release site. The 458 released frogs dispersed rapidly and were difficult to re-encounter unless they carried a radio transmitter. No frog was seen after 36 days following release. Thirty frogs were fitted with radio transmitters and only half were trackable by day 10. Tetrodotoxin was not detected in the skins of the frogs inside mesocosms for up to 79 days. Bd loads in other species present at sites were high prior to release and decreased over time in a pattern probably driven by weather. No differences were observed in Bd prevalence between the release and non-release sites. This trial showed that refinements of our methods and approaches are required to study captiveAtelopusfrogs released into wild conditions. We recommend continuing release trials of captive-bred frogs with post-release monitoring methods, using an adaptive management framework to advance the field of amphibian reintroduction ecology.more » « less
-
Skin microbial communities are an essential part of host health and can play a role in mitigating disease. Host and environmental factors can shape and alter these microbial communities and, therefore, we need to understand to what extent these factors influence microbial communities and how this can impact disease dynamics. Microbial communities have been studied in amphibian systems due to skin microbial communities providing some resistance to the amphibian chytrid fungus, Batrachochytrium dendrobatidis . However, we are only starting to understand how host and environmental factors shape these communities for amphibians. In this study, we examined whether amphibian skin bacterial communities differ among host species, host infection status, host developmental stage, and host habitat. We collected skin swabs from tadpoles and adults of three Ranid frog species ( Lithobates spp.) at the Mianus River Gorge Preserve in Bedford, New York, USA, and used 16S rRNA gene amplicon sequencing to determine bacterial community composition. Our analysis suggests amphibian skin bacterial communities change across host developmental stages, as has been documented previously. Additionally, we found that skin bacterial communities differed among Ranid species, with skin communities on the host species captured in streams or bogs differing from the communities of the species captured on land. Thus, habitat use of different species may drive differences in host-associated microbial communities for closely-related host species.more » « less
-
Abstract Effective conservation requires understanding species’ abundance patterns and demographic rates across space and time. Ideally, such knowledge should be available for whole communities because variation in species’ dynamics can elucidate factors leading to biodiversity losses. However, collecting data to simultaneously estimate abundance and demographic rates of communities of species is often prohibitively time intensive and expensive. We developed a multispecies dynamicN‐occupancy model to estimate unbiased, community‐wide relative abundance and demographic rates. In this model, detection–nondetection data (e.g., repeated presence–absence surveys) are used to estimate species‐ and community‐level parameters and the effects of environmental factors. To validate our model, we conducted a simulation study to determine how and when such an approach can be valuable and found that our multispecies model outperformed comparable single‐species models in estimating abundance and demographic rates in many cases. Using data from a network of camera traps across tropical equatorial Africa, we then used our model to evaluate the statuses and trends of a forest‐dwelling antelope community. We estimated relative abundance, rates of recruitment (i.e., reproduction and immigration), and apparent survival probabilities for each species’ local population. The antelope community was fairly stable (although 17% of populations [species–park combinations] declined over the study period). Variation in apparent survival was linked more closely to differences among national parks than to individual species’ life histories. The multispecies dynamicN‐occupancy model requires only detection–nondetection data to evaluate the population dynamics of multiple sympatric species and can thus be a valuable tool for examining the reasons behind recent biodiversity loss.more » « less