skip to main content


Title: Exogenic Forcing Encoded in the Lithostratigraphy of Sand-Quarry Deltas
We analyze sediment texture, rock-magnetic, and depth-rank time series of meso-scale deltas and interpret the results in terms of autogenic depositional processes and exogenic forcings. As an analogue for natural deltas, this study leverages a semi-controlled environment where the deltas prograde rapidly into quarry settling ponds over decadal time spans and have compensation times on the order of ~2.4 months. The distal parts of two deltas were cored with a Geoprobe to a depth of 8.4 m. Recovery ranged from 30% to 70%, that we model as either sediment compaction or missing section (unconformities). The compaction model allows us to generate a complete time series of a decompacted section whereas the unconformity model allows us to consider the impact of significant periods of missing time. The cores were analyzed every 2 cm for magnetic susceptibility as well as grain size, texture, color, pebble content, and organic content, all of which contribute to an overall relative depth and textural ranking. Multi-taper method red-noise modeling of the time series using Astrochron identifies frequencies which rise above a 99% confidence level. The power spectra show a range of peaks, many of which fall below the compensation time and are disregarded. A significant periodicity of 2.6 months emerges in the compaction model. In the unconformity model, a peridocity of 2.6 months and also longer periodicities of 3.5 and 6 months emerge. These seasonal-scale periodicities are similar to those in regional precipitation data (4.4, 3.1, and 2.6 months) and suggest that exogenic forcing, in this case from precipitation that impacts both discharge in the source and water depth of the settling pond, are strong enough to be encoded in the sediments. Meso-scale studies of depositional systems such as these quarry deltas provide a bridge between small-scale analogue models and natural source to sink systems that we are in the process of sampling to further test our approach.  more » « less
Award ID(s):
1904262
NSF-PAR ID:
10231577
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AGU Fall Meeting
Page Range / eLocation ID:
EP019-0017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction: IODP/ICDP Expedition 364 recovered core from 505.7-1334.7 m below the seafloor (mbsf) at Site M0077A (21.45° N, 89.95° W) atop the peak ring in the Chicxulub impact structure. The core penetrated Paleogene sedimentary rocks, impactrelated suevite, melt rock, and granitic basement [1]. Approximately 110 m of post-impact, hemipelagic and pelagic sedimentary rocks were recovered, ranging from middle Eocene (Ypresian) to basal Paleocene (Danian) in age [1]. The transition between suevite and basal Paleocene sedimentary rocks is a remarkable succession of fining upward gravel to sand-sized suevite (Unit 2A) overlain by laminated carbonate-rich siltstone (Unit 1G, “impact boundary cocktail” [2]) that records the settling of fine-grained material postimpact [1]. This study concentrates on the carbonaterich Paleocene sedimentary rocks of overlying Unit 1F [1]. The degree of bioturbation, or ichnofabric index (II) [3, 4], provides a semiquantitative estimate of the density of burrowing within sedminentary facies. Collection of II data within the context of facies analysis thus yields insight into the initial and then continued disturbance of sediment by burrowing organisms recording the return of life to the crater (Fig. 1). Unit 1G: The unit extends from 616.58-617.33 mbsf (Fig. 1) and consists mainly of dark brown to dark grayish brown calcareous siltstone but is complex with several different lithologies and post-depositional pyrite nodules that disrupt bedding. The base of the unit is a sharp, stylolitized contact overlain by two ~1 cm thick, normally graded beds. Overlying, up to 617.17 mbsf, the siltstone contains internally finely laminated cm-scale beds that alternate between dark brown and grayish brown. Above, up to 616.97 mbsf is a package with mm bedded couplets of dark brown and grayish brown calcareous siltstone that grade upward into similarly colored cm bedded couplets that then thin upward into mm bedded couplets again. Above this interval bedding is indistinct and appears to be obscured by soft sediment deformation from 616.66- 616.97 mbsf. The upper part of the unit is slightly deformed with greenish marlstone and interbedded lighter gray siltstone displaying a distinct downwarp from 616.58-616.66 mbsf. Rare oval structures, that are potential individual burrows, occur down to 616.65 mbsf. Unit 1F: The unit records the remainder of the Paleocene and extends from 607.27-616.58 mbsf (Fig. 1). The base of the unit is a sharp contact at the base of a greenish claystone (II 2) that overlies Unit 1G [1]. It consists dominantly of interbedded light gray to light bluish gray wackestone and packstone (II 3-5) and light to dark bluish gray marlstone (II 2) at cm-dmscale. All lithologies contain wispy stylolites. The lower portion of the unit (616.58 and 607.74) is cyclic with cm-dm-scale bedding and light greenish-blue to bluish marlstone bases (II 2-3) that grade upward into light gray or light bluish gray wackestone and packstone (II 3-5). Contacts between lithologies are usually gradational due to burrowing. The upper portion of the unit from 610.25 to 607.74 mbsf is a light yellowish brown burrowed packstone (II 4) intercalated with gray marlstone (II 2). The uppermost 7.5 cm is calcite cemented with 1 cm wide burrows (II 3-4). Clasts are fine to coarse sand size and include foraminifera. The upper surface of this unit is a hardground and minor unconformity overlain by Eocene rocks [1]. Ichnofabric Index: II data provides a window onto the return of life post-impact (Fig. 1). Rare structures in the upper most sandy suevite (Unit 2A) and in Unit 1G (Core 40R-1) resemble bioturbation structures but may also represent fluid escape [1]. The first welldefined oval structures that appear to be burrows occur in the upper part of Unit 1G (Fig. 1, 616.58-616.65 mbsf). Unequivocal burrows (II 2) that disturb sedimentary facies occur just above, at 616.56 mbsf in Unit 1F (Fig. 1). II of 3-4 are reached 5-6 cm above indicating significant disruption of original sedimentary strutures. An II of 5 is first documented at 616.16 mbsf (Fig. 1). Above this level through the Paleocene succession II largely varies between 2 and 5 with rare laminated intervals (II 1). Bioturbation intensity correlates well with facies changes and more marly facies display lower levels of bioturbation than more carbonate- rich facies. This correlation implies a depth and/or paleoredox control on the distribution of bioturbating organisms. Discussion: II and the return of life: The II data indicate that burrowing organisms were likely reestablished in the crater before the end of deposition of Unit 1G. Biostratigraphic analyses document a mix of Late Cretaceous and earliest Danian taxa within Unit Lunar and Planetary Science XLVIII (2017) 1348.pdf 1G and lowermost Danian zone Pα documented in the lowermost part of Unit 1F down to 616.58 mbsf [1]. P1a taxa occur down to 616.29 mbsf with P1b-P4 recorded upward through 607.27 m [1]. Burrowing organisims were thus active by earliest Danian indicating a rapid return of life to the crater. Hydrocode modeling implies that much of the deformation and peak ring formation was completed within minutes of the impact [5]. Deposition and reworking of impact breccia by tsunami and seiches likely extended for several days [6]. More refined estimates for the return of life to the crater may be possible with more detailed analysis of the deposition of laminae within Unit 1G that records marine settling of fine-grained material that may have taken days to months. 
    more » « less
  2. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently retreating due to shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss of the WAIS. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in marine-based ice sheet extent during the late Neogene and Quaternary. Numerical models indicate a fundamental role for oceanic heat in controlling this variability over at least the past 20 My. Although evidence for past ice sheet variability has been collected in marginal settings, sedimentologic sequences from the outer continental shelf are required to evaluate the extent of past ice sheet variability and the associated oceanic forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five drill sites from the outer continental shelf to rise in the eastern Ross Sea to resolve the relationship between climatic and oceanic change and WAIS evolution through the Neogene and Quaternary. This location was selected because numerical ice sheet models indicate that this sector of Antarctica is highly sensitive to changes in ocean heat flux. The expedition was designed for optimal data-model integration and will enable an improved understanding of the sensitivity of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the late early to middle Miocene). The principal goals of Expedition 374 were to • Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; • Reconstruct ice-proximal atmospheric and oceanic temperatures to identify past polar amplification and assess its forcings and feedbacks; • Assess the role of oceanic forcing (e.g., sea level and temperature) on AIS stability/instability; • Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and • Reconstruct eastern Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet stability/instability, and global climate. To achieve these objectives, we will • Use data and models to reconcile intervals of maximum Neogene and Quaternary Antarctic ice advance with far-field records of eustatic sea level change; • Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; • Reconstruct Neogene and Quaternary sea ice margin fluctuations in datable marine continental slope and rise records and correlate these records to existing inner continental shelf records; • Examine relationships among WAIS stability/instability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and • Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 was carried out from January to March 2018, departing from Lyttelton, New Zealand. We recovered 1292.70 m of high-quality cores from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite, mudstone, and diatomite, penetrating the Ross Sea seismic Unconformity RSU4. The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the early and middle Miocene. At Site U1522, we cored a discontinuous upper Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf, with the primary objective to penetrate and date seismic Unconformity RSU3, which is interpreted to represent the first major continental shelf–wide expansion and coalescing of marine-based ice streams from both East and West Antarctica. At Site U1523, we cored a sediment drift located beneath the westerly flowing Antarctic Slope Current (ASC). Cores from this site will provide a record of the changing vigor of the ASC through time. Such a reconstruction will enable testing of the hypothesis that changes in the vigor of the ASC represent a key control on regulating heat flux onto the continental shelf, resulting in the ASC playing a fundamental role in ice sheet mass balance. We also cored two sites on the continental slope and rise. At Site U1524, we cored a Plio–Pleistocene sedimentary sequence on the continental rise on the levee of the Hillary Canyon, which is one of the largest conduits of Antarctic Bottom Water delivery from the Antarctic continental shelf into the abyssal ocean. Drilling at Site U1524 was intended to penetrate into middle Miocene and older strata but was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (U1525) to core a single hole with a record complementary to the upper part of the section recovered at Site U1524. We returned to Site U1524 3 days later, after the sea ice cleared. We then cored Hole U1524C with the rotary core barrel with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF due to a mechanical failure with the vessel that resulted in termination of all drilling operations and a return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives as originally planned. In particular, we were not able to obtain the deeper time record of the middle Miocene on the continental rise or abyssal sequences that would have provided a continuous and contemporaneous archive to the high-quality (but discontinuous) record from Site U1521 on the continental shelf. The mechanical failure also meant we could not recover sediment cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a shelf-to-rise transect for the Miocene, a continental shelf-to-rise transect for the Pliocene to Pleistocene interval is possible through comparison of the high-quality records from Site U1522 with those from Site U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL). 
    more » « less
  3. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently locally retreating because of shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in ice sheet extent during the late Neogene and Quaternary. Climate and ice sheet models indicate a fundamental role for oceanic heat in controlling ice sheet variability over at least the past 20 My. Although evidence for past ice sheet variability is available from ice-proximal marine settings, sedimentary sequences from the continental shelf and rise are required to evaluate the extent of past ice sheet variability and the associated forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five sites from the outer continental shelf to rise in the central Ross Sea to resolve Neogene and Quaternary relationships between climatic and oceanic change and WAIS evolution. The Ross Sea was targeted because numerical ice sheet models indicate that this sector of Antarctica responds sensitively to changes in ocean heat flux. Expedition 374 was designed for optimal data-model integration to enable an improved understanding of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the Miocene Climatic Optimum). The principal goals of Expedition 374 were to: 1. Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; 2. Reconstruct ice-proximal oceanic and atmospheric temperatures to quantify past polar amplification; 3. Assess the role of oceanic forcing (e.g., temperature and sea level) on AIS variability; 4. Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and 5. Reconstruct Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet variability, and global climate. To achieve these objectives, postcruise studies will: 1. Use data and models to reconcile intervals of maximum Neogene and Quaternary ice advance and retreat with far-field records of eustatic sea level; 2. Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; 3. Reconstruct Neogene and Quaternary sea ice margin fluctuations and correlate these records to existing inner continental shelf records; 4. Examine relationships among WAIS variability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and 5. Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 departed from Lyttelton, New Zealand, in January 2018 and returned in March 2018. We recovered 1292.70 m of high-quality core from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite and diatom-rich mudstone penetrating seismic Ross Sea Unconformity 4 (RSU4). The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the late early and middle Miocene. At Site U1522, we cored a discontinuous late Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf with the primary objective of penetrating and dating RSU3, which is interpreted to reflect the first continental shelf–wide expansion of East and West Antarctic ice streams. Site U1523, located on the outer continental shelf, targeted a sediment drift beneath the westward-flowing Antarctic Slope Current (ASC) to test the hypothesis that changes in ASC vigor regulate ocean heat flux onto the continental shelf and thus ice sheet mass balance. We also cored two sites on the continental rise and slope. At Site U1524, we recovered a Plio–Pleistocene sedimentary sequence from the levee of the Hillary Canyon, one of the largest conduits of Antarctic Bottom Water from the continental shelf to the abyssal ocean. Site U1524 was designed to penetrate into middle Miocene and older strata, but coring was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (Site U1525) to core a single hole designed to complement the record at Site U1524. We returned to Site U1524 after the sea ice cleared and cored Hole U1524C with the rotary core barrel system with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF because of a mechanical failure with the vessel that resulted in termination of all drilling operations and forced us to return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives. In particular, we were not able to recover continuous middle Miocene sequences from the continental rise designed to complement the discontinuous record from continental shelf Site U1521. The mechanical failure also meant we could not recover cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a continental shelf-to-rise Miocene transect, records from Sites U1522, U1524, and U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL) can be integrated to develop a shelf-to-rise Plio–Pleistocene transect. 
    more » « less
  4. Abstract

    Channel bifurcations control the distribution of water and sediment in deltas, and the routing of these materials facilitates land building in coastal regions. Yet few practical methods exist to provide accurate predictions of flow partitioning at multiple bifurcations within a distributary channel network. Herein, multiple nodal relations that predict flow partitioning at individual bifurcations, utilizing various hydraulic and channel planform parameters, are tested against field data collected from the Selenga River delta, Russia. The data set includes 2.5 months of time‐continuous, synoptic measurements of water and sediment discharge partitioning covering a flood hydrograph. Results show that width, sinuosity, and bifurcation angle are the best remotely sensed, while cross‐sectional area and flow depth are the best field measured nodal relation variables to predict flow partitioning. These nodal relations are incorporated into a graph model, thus developing a generalized framework that predicts partitioning of water discharge and total, suspended, and bedload sediment discharge in deltas. Results from the model tested well against field data produced for the Wax Lake, Selenga, and Lena River deltas. When solely using remotely sensed variables, the generalized framework is especially suitable for modeling applications in large‐scale delta systems, where data and field accessibility are limited.

     
    more » « less
  5. International Ocean Discovery Program Expedition 397T sought to address the shortage of drilling time caused by COVID-19 mitigation during Expedition 391 (Walvis Ridge Hotspot) by drilling at two sites omitted from the earlier cruise. A week of coring time was added to a transit of JOIDES Resolution from Cape Town to Lisbon, which would cross Walvis Ridge on its way north. These two sites were located on two of the three seamount trails that emerge from the split in Walvis Ridge morphology into several seamount chains at 2°E. Site U1584 (proposed Site GT-6A) sampled the Gough track on the southeast side of the hotspot track, and Site U1585 (proposed Site TT-4A) sampled the Tristan track on the northwest side. Together with Site U1578, drilled on the Center track during Expedition 391, they form a transect across the northern Walvis Ridge Guyot Province. The goal was to core seamount basalts and associated volcanic material for geochemical and isotopic, geochronologic, paleomagnetic, and volcanological study. Scientifically, one emphasis was to better understand the split in isotopic signatures that occurs at the morphologic split. Geochronology would add to the established age progression but also give another dimension to understanding Walvis Ridge seamount formation by giving multiple ages at the same sites. The paleomagnetic study seeks to establish paleolatitudes for Walvis Ridge sites for comparison with those published from hotspot seamount chains in the Pacific, in particular to test whether a component of true polar wander affects hotspot paleolatitude. Hole U1584A cored a 66.4 m thick sedimentary and volcaniclastic section with two lithostratigraphic units. Unit I is a 23 m thick sequence of bioturbated clay and nannofossil chalk with increasing volcaniclastic content downhole. Unit II is a >43 m thick sequence of lapillistone with basalt fragments. Because the seismic section crossing the site shows no evidence as to the depth of the volcaniclastic cover, coring was terminated early. Because there were no other shallow sites nearby with different characteristics on existing seismic lines, the unused operations time from Site U1584 was shifted to the next site. The seismic reflector interpreted as the top of igneous rock at Site U1585 once again resulted from volcaniclastic deposits. Hole U1585A coring began at 144.1 mbsf and penetrated a 273.5 m thick sedimentary and volcaniclastic section atop a 81.2 m thick series of massive basalt flows. The hole was terminated at 498.8 mbsf because allotted operational time expired. The sedimentary section contains four main lithostratigraphic units. Unit I (144.1–157.02 mbsf) is a bioturbated nannofossil chalk with foraminifera, similar to the shallowest sediments recovered at Site U1584. Unit II (157.02–249.20 mbsf), which is divided into two subunits, is a 92.2 m thick succession of massive and bedded pumice and scoria lapillistone with increased reworking, clast alteration, and tuffaceous chalk intercalations downhole. Unit III (249.20–397.76 mbsf) is 148.6 m thick and consists of a complex succession of pink to greenish gray tuffaceous chalk containing multiple thin, graded ash turbidites and tuffaceous ash layers; intercalated tuffaceous chalk slumps; and several thick coarse lapilli and block-dominated volcaniclastic layers. Befitting its complexity, this unit is divided into eight subunits (IIIA–IIIH). Three of these subunits (IIIA, IIID, and IIIG) are mainly basalt breccias. Unit IV (397.76–417.60 mbsf) is a volcanic breccia, 19.8 m thick, containing mostly juvenile volcaniclasts. The igneous section, Unit V (417.60–498.80 mbsf) is composed of a small number of massive basaltic lava flows. It is divided into three igneous lithologic units, with Unit 2 represented by a single 3 cm piece of quenched basalt with olivine phenocrysts in a microcrystalline groundmass. This piece may represent a poorly recovered set of pillow lavas. Unit 1 is sparsely to highly olivine-clinopyroxene ± plagioclase phyric massive basalt and is divided into Subunits 1a and 1b based on textural and mineralogical differences, which suggests that they are two different flows. Unit 3 also consists of two massive lava flows with no clear boundary features. Subunit 3a is a 10.3 m thick highly clinopyroxene-plagioclase phyric massive basalt flow with a fine-grained groundmass. Subunit 3b is a featureless massive basalt flow that is moderately to highly clinopyroxene-olivine-plagioclase phyric and >43.7 m thick. Alteration of the lava flows is patchy and moderate to low in grade, with two stages, one at a higher temperature and one at a low temperature, both focused around fractures. The Site U1585 chronological succession from basalt flows to pelagic sediment indicates volcanic construction and subsidence. Lava eruptions were followed by inundation and shallow-water volcaniclastic sediment deposition, which deepened over time to deepwater conditions. Although the massive flows were probably erupted in a short time and have little variability, volcaniclasts in the sediments may provide geochemical and geochronologic data from a range of time and sources. Chemical analyses indicate that Site U1585 basalt samples are mostly alkalic basalt, with a few trachybasalt flow and clast samples and one basaltic trachyandesite clast. Ti/V values lie mostly within the oceanic island basalt (OIB) field but overlap the mid-ocean-ridge basalt (MORB) field. Only a handful of clasts from Site U1584 were analyzed, but geochemical data are similar. Paleomagnetic data from Site U1585 indicate that the sediments and basalt units are strongly magnetic and mostly give coherent inclination data, which indicates that the basaltic section and ~133 m of overlying volcaniclastic sediment is reversely polarized and that this reversal is preserved in a core. Above this, the rest of the sediment section records two normal and two reversed zones. Although there are not enough basalt flows to give a reliable paleolatitude, it may be possible to attain such a result from the sediments. 
    more » « less