skip to main content


Title: A new short-faced archosauriform from the Upper Triassic Placerias/Downs’ quarry complex, Arizona, USA, expands the morphological diversity of the Triassic archosauriform radiation
Abstract The Placerias /Downs’ Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3–4 anterior, a larger caniniform, and 1–3 “postcanine” alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus . This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa.  more » « less
Award ID(s):
1943286
NSF-PAR ID:
10334812
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Science of Nature
Volume:
108
Issue:
4
ISSN:
0028-1042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    New discoveries at the Arlington Archosaur Site (AAS), a Cenomanian (Late Cretaceous) locality in north‐central Texas, are filling gaps in our knowledge of mid‐Cretaceous Appalachian ecosystems, which remain poorly characterized. The AAS is notable because it preserves a diverse crocodyliform record. As seen in other sites that preserve four or more crocodyliform taxa, the species present at the AAS exhibit different snout shapes and body sizes, indicating that this high diversity of sympatric species was likely sustainable due to niche partitioning. Here we describeScolomastax sahlsteinigen. et sp. nov., a new species of crocodyliform from the AAS, currently known from a partial right mandibular ramus. This species differs from other crocodyliforms in possessing features associated with durophagy or omnivory, including a shortened mandible, reduced tooth count, heterodonty, a dorsally expanded surangular, and enlarged attachments for jaw adductor muscles. Our phylogenetic analysis places this new taxon within Eusuchia as a member of Paralligatoridae and sister taxon toParalligator gradilifrons. Scolomastax sahlsteiniextends the record of paralligatorids into the Late Cretaceous of North America. This discovery represents the first appearance of this clade on the poorly known landmass of Appalachia, supporting a biogeographic connection between North America and Asia in the Early Cretaceous prior to completion of the Western Interior Seaway. However, relationships among other endemic crocodyliforms and tree instability within Paralligatoridae suggest further analysis is needed to resolve phylogenetic and biogeographic relationships (http://zoobank.org/urn:lsid:zoobank.org:pub:DC114471‐6687‐4BB5‐8FAE‐96F7278B1DAF). Anat Rec, 303:801–812, 2020. © 2019 Wiley Periodicals, Inc.

     
    more » « less
  2. Abstract Non-archosaur archosauromorphs are a paraphyletic group of diapsid reptiles that were important members of global Middle and Late Triassic continental ecosystems. Included in this group are the azendohsaurids, a clade of allokotosaurians (kuehneosaurids and Azendohsauridae + Trilophosauridae) that retain the plesiomorphic archosauromorph postcranial body plan but evolved disparate cranial features that converge on later dinosaurian anatomy, including sauropodomorph-like marginal dentition and ceratopsian-like postorbital horns. Here we describe a new malerisaurine azendohsaurid from two monodominant bonebeds in the Blue Mesa Member, Chinle Formation (Late Triassic, ca. 218–220 Ma); the first occurs at Petrified Forest National Park and preserves a minimum of eight individuals of varying sizes, and the second occurs near St. Johns, Arizona. Puercosuchus traverorum n. gen. n. sp. is a carnivorous malerisaurine that is closely related to Malerisaurus robinsonae from the Maleri Formation of India and to Malerisaurus langstoni from the Dockum Group of western Texas. Dentigerous elements from Puercosuchus traverorum n. gen. n. sp. confirm that some Late Triassic tooth morphotypes thought to represent early dinosaurs cannot be differentiated from, and likely pertain to, Puercosuchus -like malerisaurine taxa. These bonebeds from northern Arizona support the hypothesis that non-archosauriform archosauromorphs were locally diverse near the middle Norian and experienced an extinction event prior to the end-Triassic mass extinction coincidental with the Adamanian-Revueltian boundary recognized at Petrified Forest National Park. The relatively late age of this early-diverging taxon (Norian) suggests that the diversity of azendohsaurids is underrepresented in Middle and Late Triassic fossil records around the world. UUID: http://zoobank.org/e6eeefd2-a0ae-47fc-8604-9f45af8c1147 . 
    more » « less
  3. Abstract

    The Late Triassic Dockum Group in northwestern Texas preserves a rich diversity of pseudosuchian taxa, particularly of aetosaurs. In this contribution, we presentGarzapelta muellerigen. et sp. nov., a new aetosaur from the Late Triassic middle Cooper Canyon Formation (latest Adamanian–earliest Revueltian teilzones) in Garza County, Texas, based on an associated specimen that preserves a significant portion of its dorsal carapace. The carapace ofG.muelleriexhibits a striking degree of similarity between that of the paratypothoracinRioarribasuchus chamaensisand desmatosuchins. We quantitatively assessed the relationships ofG.muelleriusing several iterations of the matrix. Scoring the paramedian and lateral osteoderms ofG.muelleriindependently results in conflicting topologies. Thus, it is evident that our current matrix is limited in its ability to discern the convergence within this new taxon and that our current character lists are not fully accounting for the morphological disparity of the aetosaurian carapace. Qualitative comparisons suggest thatG.muelleriis aRioarribasuchus‐like paratypothoracin with lateral osteoderms that are convergent with those of desmatosuchins. Although the shape of the dorsal eminence, and the presence of a dorsal flange that is rectangular and proportionately longer than the lateral flange are desmatosuchin‐like features ofG.muelleri, the taxon does not exhibit the articulation style between the paramedian and lateral osteoderms which diagnose the Desmatosuchini (i.e., a rigid interlocking contact, and an anteromedial edge of the lateral osteoderm that overlaps the adjacent paramedian osteoderm).

     
    more » « less
  4. Liu, Jun (Ed.)
    Intensifying macrovertebrate reconnaissance together with refined age-dating of mid-Cretaceous assemblages in recent decades is producing a more nuanced understanding of the impact of the Cretaceous Thermal Maximum on terrestrial ecosystems. Here we report discovery of a new early-diverging ornithopod, Iani smithi gen. et sp. nov., from the Cenomanian-age lower Mussentuchit Member, Cedar Mountain Formation of Utah, USA. The single known specimen of this species (NCSM 29373) includes a well-preserved, disarticulated skull, partial axial column, and portions of the appendicular skeleton. Apomorphic traits are concentrated on the frontal, squamosal, braincase, and premaxilla, including the presence of three premaxillary teeth. Phylogenetic analyses using parsimony and Bayesian inference posit Iani as a North American rhabdodontomorph based on the presence of enlarged, spatulate teeth bearing up to 12 secondary ridges, maxillary teeth lacking a primary ridge, a laterally depressed maxillary process of the jugal, and a posttemporal foramen restricted to the squamosal, among other features. Prior to this discovery, neornithischian paleobiodiversity in the Mussentuchit Member was based primarily on isolated teeth, with only the hadrosauroid Eolambia caroljonesa named from macrovertebrate remains. Documentation of a possible rhabdodontomorph in this assemblage, along with published reports of an as-of-yet undescribed thescelosaurid, and fragmentary remains of ankylosaurians and ceratopsians confirms a minimum of five, cohabiting neornithischian clades in earliest Late Cretaceous terrestrial ecosystems of North America. Due to poor preservation and exploration of Turonian–Santonian assemblages, the timing of rhabdodontomorph extirpation in the Western Interior Basin is, as of yet, unclear. However, Iani documents survival of all three major clades of Early Cretaceous neornithischians (Thescelosauridae, Rhabdodontomorpha, and Ankylopollexia) into the dawn of the Late Cretaceous of North America. 
    more » « less
  5. Abstract

    The extraordinary window of phosphatized and phosphatic small shelly fossils (SSF) during the early and middle Cambrian is an important testament to the radiation of biomineralizing metazoans. WhileSSFare well known from most Cambrian palaeocontinents during this time interval, western Laurentia has relatively fewSSFfaunas. Here we describe a diverseSSFfauna from the early Cambrian (Stages 3–4) Mural Formation at three localities in Alberta and British Columbia, Canada, complemented by carbon isotope measurements to aid in a potential future bio‐chemostratigraphic framework. The fauna expands the recordedSSFassemblage diversity in western Laurentia and includes several brachiopods, four bradoriids, three chancelloriids, two hyoliths, a tommotiid and a helcionellid mollusc as well as echinoderm ossicles and specimens ofMicrodictyon,VolborthellaandHyolithellus. New taxa include the tommotiid genusCanadiellagen. nov., the new bradoriid speciesHipponicharion perforatasp. nov. andPseudobeyrichona tauratasp. nov. Compared with contemporaneous faunas from western Laurentia, the fauna is relatively diverse, particularly in taxa with originally phosphatic shells, which appear to be associated with archaeocyathid build‐ups. This suggests that the generally low faunal diversity in western Laurentia may be at least partly a consequence of poor sampling of suitable archaeocyathan reef environments. In addition, the tommotiidCanadiella filigranaappears to be of biostratigraphical significance in Cambrian Stage 3 strata of western Laurentia, and the unexpected high diversity of bradoriid arthropods in the fauna also suggests that this group may prove useful for biostratigraphical resolution in the region.

     
    more » « less