Abstract Given $$n$$ general points $$p_1, p_2, \ldots , p_n \in{\mathbb{P}}^r$$ it is natural to ask whether there is a curve of given degree $$d$$ and genus $$g$$ passing through them; by counting dimensions a natural conjecture is that such a curve exists if and only if $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor.\end{equation*}$$The case of curves with nonspecial hyperplane section was recently studied in [2], where the above conjecture was shown to hold with exactly three exceptions. In this paper, we prove a “bounded-error analog” for special linear series on general curves; more precisely we show that existence of such a curve subject to the stronger inequality $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor - 3.\end{equation*}$$Note that the $-3$ cannot be replaced with $-2$ without introducing exceptions (as a canonical curve in $${\mathbb{P}}^3$$ can only pass through nine general points, while a naive dimension count predicts twelve). We also use the same technique to prove that the twist of the normal bundle $$N_C(-1)$$ satisfies interpolation for curves whose degree is sufficiently large relative to their genus, and deduce from this that the number of general points contained in the hyperplane section of a general curve is at least $$\begin{equation*}\min\left(d, \frac{(r - 1)^2 d - (r - 2)^2 g - (2r^2 - 5r + 12)}{(r - 2)^2}\right).\end{equation*}$$ As explained in [7], these results play a key role in the author’s proof of the maximal rank conjecture [9].
more »
« less
Art Gallery Problem with Rook and Queen Vision
Abstract How many chess rooks or queens does it take to guard all squares of a given polyomino, the union of square tiles from a square grid? This question is a version of the art gallery problem in which the guards can “see” whichever squares the rook or queen attacks. We show that $$\lfloor {\frac{n}{2}} \rfloor $$ ⌊ n 2 ⌋ rooks or $$\lfloor {\frac{n}{3}} \rfloor $$ ⌊ n 3 ⌋ queens are sufficient and sometimes necessary to guard a polyomino with n tiles. We then prove that finding the minimum number of rooks or queens needed to guard a polyomino is NP-hard. These results also apply to d -dimensional rooks and queens on d -dimensional polycubes. Finally, we use bipartite matching theorems to describe sets of non-attacking rooks on polyominoes.
more »
« less
- PAR ID:
- 10231618
- Date Published:
- Journal Name:
- Graphs and Combinatorics
- Volume:
- 37
- Issue:
- 2
- ISSN:
- 0911-0119
- Page Range / eLocation ID:
- 621 to 642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. In this paper, we consider the family of graphs which contain no $$K_{s,t}$$-minor. We show that for any $$t\geq s \geq 2$$ and sufficiently large $$n$$, there is an integer $$\xi_{t}$$ such that the extremal $$n$$-vertex $$K_{s,t}$$-minor-free graph attaining the maximum spread is the graph obtained by joining a graph $$L$$ on $(s-1)$ vertices to the disjoint union of $$\lfloor \frac{2n+\xi_{t}}{3t}\rfloor$$ copies of $$K_t$$ and $$n-s+1 - t\lfloor \frac{2n+\xi_t}{3t}\rfloor$$ isolated vertices. Furthermore, we give an explicit formula for $$\xi_{t}$$ and an explicit description for the graph $$L$$ for $$t \geq \frac32(s-3) +\frac{4}{s-1}$$.more » « less
-
What is the maximum number of holes enclosed by a $$d$$-dimensional polyomino built of $$n$$ tiles? Represent this number by $$f_d(n)$$. Recent results show that $$f_2(n)/n$$ converges to $1/2$. We prove that for all $$d \geq 2$$ we have $$f_d(n)/n \to (d-1)/d$$ as $$n$$ goes to infinity. We also construct polyominoes in $$d$$-dimensional tori with the maximal possible number of holes per tile. In our proofs, we use metaphors from error-correcting codes and dynamical systems.more » « less
-
The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. Gotshall, O'Brien and Tait conjectured that for sufficiently large $$n$$, the $$n$$-vertex outerplanar graph with maximum spread is the graph obtained by joining a vertex to a path on $n-1$ vertices. In this paper, we disprove this conjecture by showing that the extremal graph is the graph obtained by joining a vertex to a path on $$\lceil(2n-1)/3\rceil$$ vertices and $$\lfloor(n-2)/3\rfloor$$ isolated vertices. For planar graphs, we show that the extremal $$n$$-vertex planar graph attaining the maximum spread is the graph obtained by joining two nonadjacent vertices to a path on $$\lceil(2n-2)/3\rceil$$ vertices and $$\lfloor(n-4)/3\rfloor$$ isolated vertices.more » « less
-
Utilizing the framework of\mathbb{Z}_2 lattice gauge theories in the context of Pauli stabilizer codes, we present methodologies for simulating fermions via qubit systems on a two-dimensional square lattice. We investigate the symplectic automorphisms of the Pauli module over the Laurent polynomial ring. This enables us to systematically increase the code distances of stabilizer codes while fixing the rate between encoded logical fermions and physical qubits. We identify a family of stabilizer codes suitable for fermion simulation, achieving code distances of d=2,3,4,5,6,7, allowing correction of any\lfloor \frac{d-1}{2} \rfloor -qubit error. In contrast to the traditional code concatenation approach, our method can increase the code distances without decreasing the (fermionic) code rate. In particular, we explicitly show all stabilizers and logical operators for codes with code distances of d=3,4,5. We provide syndromes for all Pauli errors and invent a syndrome-matching algorithm to compute code distances numerically.more » « less
An official website of the United States government

