skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: High-Dimensional Holeyominoes
What is the maximum number of holes enclosed by a $d$-dimensional polyomino built of $n$ tiles? Represent this number by $f_d(n)$. Recent results show that $f_2(n)/n$ converges to $1/2$. We prove that for all $d \geq 2$ we have $f_d(n)/n \to (d-1)/d$ as $n$ goes to infinity. We also construct polyominoes in $d$-dimensional tori with the maximal possible number of holes per tile. In our proofs, we use metaphors from error-correcting codes and dynamical systems.  more » « less
Award ID(s):
2001042
PAR ID:
10353957
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
29
Issue:
3
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove a bound relating the volume of a curve near a cusp in a complex ball quotient $X=\mathbb{B}/\unicode[STIX]{x1D6E4}$ to its multiplicity at the cusp. There are a number of consequences: we show that for an $n$ -dimensional toroidal compactification $\overline{X}$ with boundary $D$ , $K_{\overline{X}}+(1-\unicode[STIX]{x1D706})D$ is ample for $\unicode[STIX]{x1D706}\in (0,(n+1)/2\unicode[STIX]{x1D70B})$ , and in particular that $K_{\overline{X}}$ is ample for $n\geqslant 6$ . By an independent algebraic argument, we prove that every ball quotient of dimension $n\geqslant 4$ is of general type, and conclude that the phenomenon famously exhibited by Hirzebruch in dimension 2 does not occur in higher dimensions. Finally, we investigate the applications to the problem of bounding the number of cusps and to the Green–Griffiths conjecture. 
    more » « less
  2. Abstract Given a Banach space X and a real number α ≥ 1, we write: (1) D ( X ) ≤ α if, for any locally finite metric space A , all finite subsets of which admit bilipschitz embeddings into X with distortions ≤ C , the space A itself admits a bilipschitz embedding into X with distortion ≤ α ⋅ C ; (2) D ( X ) = α + if, for every ϵ > 0, the condition D ( X ) ≤ α + ϵ holds, while D ( X ) ≤ α does not; (3) D ( X ) ≤ α + if D ( X ) = α + or D ( X ) ≤ α. It is known that D ( X ) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1) D ((⊕ n =1 ∞ X n ) p ) ≤ 1 + for every nested family of finite-dimensional Banach spaces { X n } n =1 ∞ and every 1 ≤ p ≤ ∞. (2) D ((⊕ n =1 ∞ ℓ ∞ n ) p ) = 1 + for 1 < p < ∞. (3) D ( X ) ≤ 4 + for every Banach space X with no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008). 
    more » « less
  3. Abstract We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any $d$ -regular graph on $n$ vertices contains a spanning subgraph in which the number of vertices of each degree between $0$ and $d$ deviates from $\frac{n}{d+1}$ by at most $2$ . The second is that every graph on $n$ vertices with minimum degree $\delta$ contains a spanning subgraph in which the number of vertices of each degree does not exceed $\frac{n}{\delta +1}+2$ . Both conjectures remain open, but we prove several asymptotic relaxations for graphs with a large number of vertices $n$ . In particular we show that if $d^3 \log n \leq o(n)$ then every $d$ -regular graph with $n$ vertices contains a spanning subgraph in which the number of vertices of each degree between $0$ and $d$ is $(1+o(1))\frac{n}{d+1}$ . We also prove that any graph with $n$ vertices and minimum degree $\delta$ contains a spanning subgraph in which no degree is repeated more than $(1+o(1))\frac{n}{\delta +1}+2$ times. 
    more » « less
  4. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  5. null (Ed.)
    ABSTRACT Miniature insects must overcome significant viscous resistance in order to fly. They typically possess wings with long bristles on the fringes and use a clap-and-fling mechanism to augment lift. These unique solutions to the extreme conditions of flight at tiny sizes (<2 mm body length) suggest that natural selection has optimized wing design for better aerodynamic performance. However, species vary in wingspan, number of bristles (n) and bristle gap (G) to diameter (D) ratio (G/D). How this variation relates to body length (BL) and its effects on aerodynamics remain unknown. We measured forewing images of 38 species of thrips and 21 species of fairyflies. Our phylogenetic comparative analyses showed that n and wingspan scaled positively and similarly with BL across both groups, whereas G/D decreased with BL, with a sharper decline in thrips. We next measured aerodynamic forces and visualized flow on physical models of bristled wings performing clap-and-fling kinematics at a chord-based Reynolds number of 10 using a dynamically scaled robotic platform. We examined the effects of dimensional (G, D, wingspan) and non-dimensional (n, G/D) geometric variables on dimensionless lift and drag. We found that: (1) increasing G reduced drag more than decreasing D; (2) changing n had minimal impact on lift generation; and (3) varying G/D minimally affected aerodynamic forces. These aerodynamic results suggest little pressure to functionally optimize n and G/D. Combined with the scaling relationships between wing variables and BL, much wing variation in tiny flying insects might be best explained by underlying shared growth factors. 
    more » « less