skip to main content

Title: Ultrafast spectroscopy of biliverdin dimethyl ester in solution: pathways of excited-state depopulation
Biliverdin is a bile pigment that has a very low fluorescence quantum yield in solution, but serves as a chromophore in far-red fluorescent proteins being developed for bio-imaging. In this work, excited-state dynamics of biliverdin dimethyl ether (BVE) in solvents were investigated using femtosecond (fs) and picosecond (ps) time-resolved absorption and fluorescence spectroscopy. This study is the first fs timescale investigation of BVE in solvents, and therefore revealed numerous dynamics that were not resolved in previous, 200 ps time resolution measurements. Viscosity- and isotope-dependent experiments were performed to identify the contributions of isomerization and proton transfer to the excited-state dynamics. In aprotic solvents, a ∼2 ps non-radiative decay accounts for 95% of the excited-state population loss. In addition, a minor ∼30 ps emissive decay pathway is likely associated with an incomplete isomerization process around the C15C16 double bond that results in a flip of the D-ring. In protic solvents, the dynamics are more complex due to hydrogen bond interactions between solute and solvent. In this case, the ∼2 ps decay pathway is a minor channel (15%), whereas ∼70% of the excited-state population decays through an 800 fs emissive pathway. The ∼30 ps timescale associated with isomerization is also observed in more » protic solvents. The most significant difference in protic solvents is the presence of a >300 ps timescale in which BVE can decay through an emissive state, in parallel with excited-state proton transfer to the solvent. Interestingly, a small fraction of a luminous species, which we designate lumin-BVE (LBVE), is present in protic solvents. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1734006
Publication Date:
NSF-PAR ID:
10231676
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
35
Page Range or eLocation-ID:
19903 to 19912
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. Photochemistry powers numerous processes from luminescence and human vision, to light harvesting. However, the elucidation of multidimensional photochemical reaction coordinates on molecular timescales remains challenging. We developed wavelength-tunable femtosecond stimulated Raman spectroscopy to simultaneously achieve pre-resonance enhancement for transient reactant and product species of the widely used photoacid pyranine undergoing excited-state proton transfer (ESPT) reaction in solution. In the low-frequency region, the 280 cm −1 ring deformation mode following 400 nm photoexcitation exhibits pronounced intensity oscillations on the sub-picosecond timescale due to anharmonic vibrational coupling to the 180 cm −1 hydrogen-bond stretching mode only in ESPT-capable solvents, indicating a primary event of functional relevance. This leads to the contact ion pair formation on the 3 ps timescale before diffusion-controlled separation. The intermolecular 180 cm −1 mode also reveals vibrational cooling time constants, ∼500 fs and 45 ps in both H 2 O and D 2 O, which differ from ESPT time constants of ∼3/8 and 90/250 ps in H 2 O/D 2 O, respectively. Spectral results using H 2 18 O further substantiate the functional role of the intermolecular 180 cm −1 mode in modulating the distance between proton donor and acceptor and forming the transient ion pair. The directmore »observation of molecular structural evolution across a wide spectral region during photochemical reactions enriches our fundamental understanding of potential energy surface and holds the key to advancing energy and biological sciences with exceptional atomic and temporal precision.« less
  2. Natural and laboratory-guided evolution has created a rich diversity of fluorescent protein (FP)-based sensors for chloride (Cl − ). To date, such sensors have been limited to the Aequorea victoria green fluorescent protein (avGFP) family, and fusions with other FPs have unlocked ratiometric imaging applications. Recently, we identified the yellow fluorescent protein from jellyfish Phialidium sp. (phiYFP) as a fluorescent turn-on, self-ratiometric Cl − sensor. To elucidate its working mechanism as a rare example of a single FP with this capability, we tracked the excited-state dynamics of phiYFP using femtosecond transient absorption (fs-TA) spectroscopy and target analysis. The photoexcited neutral chromophore undergoes bifurcated pathways with the twisting-motion-induced nonradiative decay and barrierless excited-state proton transfer. The latter pathway yields a weakly fluorescent anionic intermediate , followed by the formation of a red-shifted fluorescent state that enables the ratiometric response on the tens of picoseconds timescale. The redshift results from the optimized π–π stacking between chromophore Y66 and nearby Y203, an ultrafast molecular event. The anion binding leads to an increase of the chromophore p K a and ESPT population, and the hindrance of conversion. The interplay between these two effects determines the turn-on fluorescence response to halides such as Cl −more »but turn-off response to other anions such as nitrate as governed by different binding affinities. These deep mechanistic insights lay the foundation for guiding the targeted engineering of phiYFP and its derivatives for ratiometric imaging of cellular chloride with high selectivity.« less
  3. Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of themore »Pt–Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm −1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt–Pt bond contraction changes the stretching frequency from 110 to 145 cm −1 and stabilizes the 1 MMLCT state relative to the 3 LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1 MMLCT to the 3 LC states occurs before the Pt–Pt bond shortening. The findings herein provide insight into understanding the impact of Pt–Pt bond contraction on the ultrafast branching of the 1 MMLCT population into the direct ( 1 MMLCT → 3 MMLCT) and indirect ISC pathways ( 1 MMLCT → 3 LC → 3 MMLCT) in the Pt( ii ) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before.« less
  4. Shea ; Joan-Emma (Ed.)
    Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photo-induced proton transfer between the photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photo-excitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an “associated” state, where the proton is “shared” between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a “solvent separated” state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a “water wire”) around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule.more »We find a near linear relationship between emission wavelength and proton-HPTS distance over the simulations’ time scale, suggesting that emission wavelength can be used as a ruler for proton distance. Our simulations reveal that the “associated” state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized “solvent-separated” state) corresponds to the longest experimental time constant.« less
  5. Shea, Joan-Emma (Ed.)
    investigate photo-induced proton transfer between the photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photo-excitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an “associated” state, where the proton is “shared” between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a “solvent separated” state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a “water wire”) around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between emission wavelength and proton-HPTS distancemore »over the simulations’ time scale, suggesting that emission wavelength can be used as a ruler for proton distance. Our simulations reveal that the “associated” state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized “solvent-separated” state) corresponds to the longest experimental time constant« less