skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Discovering a rotational barrier within a charge-transfer state of a photoexcited chromophore in solution
Methylation occurs in a myriad of systems with protective and regulatory functions. 8-methoxypyrene-1,3,6-trisulfonate (MPTS), a methoxy derivative of a photoacid, serves as a model system to study effects of methylation on the excited state potential energy landscape. A suite of spectroscopic techniques including transient absorption, wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS), and fluorescence quantum yield measurements via steady-state electronic spectroscopy reveal the energy dissipation pathways of MPTS following photoexcitation. Various solvents enable a systematic characterization of the H-bonding interaction, viscosity, and dynamic solvation that influence the ensuing relaxation pathways. The formation of a charge-transfer state out of the Franck–Condon region occurs on the femtosecond-to-picosecond solvation timescale before encountering a rotational barrier. The rotational relaxation correlates with the H-bond donating strength of solvent, while the rotational time constant lengthens as solvent viscosity increases. Time-resolved excited-state FSRS, aided by quantum calculations, provides crucial structural dynamics knowledge and reveals the sulfonate groups playing a dominant role during solvation. Several prominent vibrational motions of the pyrene ring backbone help maneuver the population toward the more fluorescent state. These ultrafast correlated electronic and nuclear motions ultimately govern the fate of the photoexcited chromophore in solution. Overall, MPTS in water displays the highest probability to fluoresce, while the aprotic and more viscous dimethyl sulfoxide enhances the nonradiative pathways. These mechanistic insights may apply robustly to other photoexcited chromophores that do not undergo excited-state proton transfer or remain trapped in a broad electronic state and also provide design principles to control molecular optical responses with site-specific atomic substitution.  more » « less
Award ID(s):
1455353
PAR ID:
10589275
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Structural Dynamics
Volume:
7
Issue:
2
ISSN:
2329-7778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Twisting intramolecular charge transfer (TICT) is a common nonradiative relaxation pathway for a molecule with a flexible substituent, effectively reducing the fluorescence quantum yield (FQY) by swift twisting motions. In this work, we investigate coumarin 481 (C481) that contains a diethylamino group in solution by femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and theoretical calculations, aided by coumarin 153 with conformational locking of the alkyl arms as a control sample. In different solvents with decreasing polarity, the transition energy barrier between the fluorescent state and TICT state increases, leading to an increase of the FQY. Correlating the fluorescence decay time constant with solvent polarity and viscosity parameters, the multivariable linear regression analysis indicates that the chromophore’s nonradiative relaxation pathway is affected by both hydrogen (H)-bond donating and accepting capabilities as well as dipolarity of the solvent. Results from the ground- and excited-state FSRS shed important light on structural dynamics of C481 undergoing prompt light-induced intramolecular charge transfer from the diethylamino group toward –C=O and –CF3 groups, while the excited-state C=O stretch marker band tracks initial solvation and vibrational cooling dynamics in aprotic and protic solvents (regardless of polarity) as well as H-bonding dynamics in the fluorescent state for C481 in high-polarity protic solvents like methanol. The uncovered mechanistic insights into the molecular origin for the fluorogenicity of C481 as an environment-polarity sensor substantiate the generality of ultrafast TICT state formation of flexible molecules in solution, and the site-dependent substituent(s) as an effective route to modulate the fluorescence properties for such compact, engineerable, and versatile chemosensors. 
    more » « less
  2. Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of –COH rocking and –C=C, –C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck–Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique “W”-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump–probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics. 
    more » « less
  3. Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting ortho-, meta-, and para-substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP−), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional “nanomachines” that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor–acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales. In particular, the meta-substituted compound 3NP or 3NP− exhibits the strongest charge-transfer character with FSRS signatures (e.g., C–N peak frequency), and thus, does not favor nitroaromatic twist in the excited state, while the ortho-substituted compound 2NP can undergo ESIPT in water and likely generate nitrous acid (HONO) after 267 nm excitation. The delineated mechanistic insights into the nitro-substituent-location-, protonation-, solvent-, and excitation-wavelength-dependent effects on nitrophenols, in conjunction with the ultraviolet-light-induced degradation of 2NP in water, substantiates an appealing discovery loop to characterize and engineer functional molecules for environmental applications. 
    more » « less
  4. Abstract The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm−1coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates. 
    more » « less
  5. Photoconvertible fluorescent proteins (pcFPs) have enabled exquisite images of cellular structures due to their genetic encodability and red-shifted emission with high brightness, hence receiving increased traction in the field. However, the red form of Kaede-like pcFPs after photoconversion remains underexplored. We implemented ultrafast electronic and vibrational spectroscopies on the red Kaede chromophore in solution vs the protein pocket of the least-evolved ancestor (LEA, a Kaede-like green-to-red pcFP) to gain crucial insights into the photophysical processes of the chromophore. The measured fluorescence quantum yield (FQY) values were correlated with ultrafast dynamics to reveal that hydrogen-bonding interactions with the solvent can quench the excited-state Kaede in solution. A viscosity-dependent sub-ps decay indicates nonradiative relaxation involving swift chromophore conformational motions. Femtosecond transient absorption and stimulated Raman spectroscopy (FSRS) reveal an additional ∼1 ps decay of the photoconverted red form of LEA that is absent in green LEA before photoconversion. Transient structural dynamics from FSRS elucidate this decay to involve the phenolate and imidazolinone ring twists that are implicated during cis → trans isomerization and on → off photoswitching in phototransformable fluorescent proteins (FPs). Compared to green-emitting species, the FQY of red LEA (∼0.58) and many other red FPs are often reduced, limiting their applications in modern bioimaging techniques. By shining more light on the often overlooked photoconverted form of pcFPs with ultrafast spectroscopies, we envision such essential mechanistic insights to enable a bottom-up approach for rationally improving the brightness of red-emitting LEA and many other controllable bioprobes, including FPs. 
    more » « less