Commercially available benzophenone imine (HNCPh 2 ) reacts with β-diketiminato copper( ii ) tert -butoxide complexes [Cu II ]–O t Bu to form isolable copper( ii ) ketimides [Cu II ]–NCPh 2 . Structural characterization of the three coordinate copper( ii ) ketimide [Me 3 NN]Cu–NCPh 2 reveals a short Cu-N ketimide distance (1.700(2) Å) with a nearly linear Cu–N–C linkage (178.9(2)°). Copper( ii ) ketimides [Cu II ]–NCPh 2 readily capture alkyl radicals R˙ (PhCH(˙)Me and Cy˙) to form the corresponding R–NCPh 2 products in a process that competes with N–N coupling of copper( ii ) ketimides [Cu II ]–NCPh 2 to form the azine Ph 2 CN–NCPh 2 . Copper( ii ) ketimides [Cu II ]–NCAr 2 serve as intermediates in catalytic sp 3 C–H amination of substrates R–H with ketimines HNCAr 2 and t BuOO t Bu as oxidant to form N -alkyl ketimines R–NCAr 2 . This protocol enables the use of unactivated sp 3 C–H bonds to give R–NCAr 2 products easily converted to primary amines R–NH 2 via simple acidic deprotection.
more »
« less
Copper Catalyzed sp3 C-H a-Acetylation
α-substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in in natural products and pharmaceuticals. We report the sp3 C-H α-acetylation of sp3 C-H substrates R-H with arylmethyl ketones ArC(O)Me to provide α-alkylated ketones ArC(O)CH2R at RT with tBuOOtBu as oxidant via copper(I) β-diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α-substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates [CuII](CH2C(O)Ar) that capture alkyl radicals R• to give R-CH2C(O)Ar under competing dimerization of the copper(II) enolate to give the 1,4-diketone ArC(O)CH2CH2C(O)Ar.
more »
« less
- Award ID(s):
- 1665348
- PAR ID:
- 10231948
- Date Published:
- Journal Name:
- ChemRxiv
- ISSN:
- 2573-2293
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2‐N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups.more » « less
-
The methyl moiety is a key functional group that can result in major improvements in the potency and selectivity of pharmaceutical agents. We present a radical relay C–H methylation methodology that employs a β-diketiminate copper catalyst capable of methylating unactivated C(sp3)–H bonds. Taking advantage of the bench-stable DABAL-Me3, an amine-stabilized trimethylaluminum reagent, methylation of a range of substrates possessing both activated and unactivated C(sp3)–H bonds proceeds with a minimal amount of overmethylation. Mechanistic studies supported by both experiment and computation suggest the intermediacy of a copper(II) methyl intermediate reactive toward both the loss of the methyl radical as well capture of radicals R• to form R–Me bonds.more » « less
-
Abstract A widely applicable approach was developed to synthesize ketones, esters, amides via the oxidative C−C bond cleavage of readily available alkyl aldehydes. Green and abundant molecular oxygen (O2) was used as the oxidant, and base metals (cobalt and copper) were used as the catalysts. This strategy can be extended to the one‐pot synthesis of ketones from primary alcohols and α‐ketoamides from aldehydes.more » « less
-
The selective functionalization of remote C–H bonds via intramolecular hydrogen atom transfer (HAT) is transformative for organic synthesis. This radical-mediated strategy provides access to novel reactivity that is complementary to closed-shell pathways. As modern methods for mild generation of radicals are continually developed, inherent selectivity paradigms of HAT mechanisms offer unparalleled opportunities for developing new strategies for C–H functionalization. This review outlines the history, recent advances, and mechanistic underpinnings of intramolecular HAT as a guide to addressing ongoing challenges in this arena. 1 Introduction 2 Nitrogen-Centered Radicals 2.1 sp3 N-Radical Initiation 2.2 sp2 N-Radical Initiation 3 Oxygen-Centered Radicals 3.1 Carbonyl Diradical Initiation 3.2 Alkoxy Radical Initiation 3.3 Non-alkoxy Radical Initiation 4 Carbon-Centered Radicals 4.1 sp2 C-Radical Initiation 4.2 sp3 C-Radical Initiation 5 Conclusionmore » « less