skip to main content


Title: pH- and chaotropic anion-induced conformational changes of tertiary amine-containing binary heterografted star molecular bottlebrushes in aqueous solution
This article reports on the conformational behavior of binary heterografted three-arm star molecular bottlebrushes composed of poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA, the brushes denoted as SMB-1) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA, the brushes denoted as SMB-2) side chains in aqueous solutions in response to pH changes and addition of salts containing chaotropic anions (CAs). PEO was introduced into the brushes as a stabilizer when the tertiary amine-containing side chains collapsed. While a small size decrease of SMB-1 was observed with increasing pH from acidic to basic, SMB-2 exhibited a large and abrupt size transition caused by the pH-induced solubility change of PDEAEMA. Atomic force microscopy imaging revealed a star-to-globule shape transition of SMB-2 upon increasing pH across the p K a ; in contrast, SMB-1 stayed in the starlike state at both low and high pH values. Intriguingly, both SMB-1 and -2 displayed star-to-globule shape transitions in acidic solutions upon addition of salts containing sufficiently strong CAs such as ClO 4 − , with SMB-2 showing a greater sensitivity to moderate CAs than SMB-1. Moreover, superchaotropic anions ( e.g. , Fe(CN) 6 3− and S 2 O 8 2− ) were significantly more efficient in inducing shape changing than common CAs. The CA-induced shape transitions resulted from the ion pairing of CAs and protonated tertiary amine groups and the high propensity of CAs to associate with hydrophobic moieties in the brushes, which decreased the solubility of the tertiary amine-containing side chains and caused the brushes to collapse. The findings reported here may enable potential applications of molecular bottlebrushes in, e.g. , encapsulation and release of ionic substances.  more » « less
Award ID(s):
2004564 1607076
NSF-PAR ID:
10232041
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
2
ISSN:
1759-9954
Page Range / eLocation ID:
265 to 276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper( i )-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN) 6 ] 3− and [Fe(CN)6] 4− , moderate CAs PF 6 − and ClO 4 − , weak CA I − , and for comparison, kosmotropic anion SO 4 2− . At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderate CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I − and SO 4 2− had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release. 
    more » « less
  2. Abstract

    By combining the unique characteristics of molecular bottlebrushes (MBBs) and the properties of stimuli‐responsive polymers, we show that MBBs with randomly grafted poly(n‐butyl acrylate) and pH‐responsive poly(2‐(N,N‐diethylamino)ethyl methacrylate) (PDEAEMA) side chains are efficient and robust pH‐responsive emulsifiers. Water‐in‐toluene emulsions were formed at pH 4.0 and disrupted by increasing the pH to 10.0. The emulsion generation and disruption was reversible over the ten cycles investigated, and the bottlebrushes remained intact. The exceptional emulsion stability stemmed from the high interfacial binding energy of MBBs, imparted by their large molecular size and Janus architecture at the interface, as evidenced by the interfacial jamming and wrinkling of the assemblies upon reducing the interfacial area. At pH 10.0, PDEAEMA became water‐insoluble, and the MBBs desorbed from the interface, causing de‐emulsification. Consequently, we have shown that the judicious design of MBBs can generate properties of particle emulsifiers from their large size, while the responsiveness of the MBBs enables more potential applications.

     
    more » « less
  3. Abstract

    By combining the unique characteristics of molecular bottlebrushes (MBBs) and the properties of stimuli‐responsive polymers, we show that MBBs with randomly grafted poly(n‐butyl acrylate) and pH‐responsive poly(2‐(N,N‐diethylamino)ethyl methacrylate) (PDEAEMA) side chains are efficient and robust pH‐responsive emulsifiers. Water‐in‐toluene emulsions were formed at pH 4.0 and disrupted by increasing the pH to 10.0. The emulsion generation and disruption was reversible over the ten cycles investigated, and the bottlebrushes remained intact. The exceptional emulsion stability stemmed from the high interfacial binding energy of MBBs, imparted by their large molecular size and Janus architecture at the interface, as evidenced by the interfacial jamming and wrinkling of the assemblies upon reducing the interfacial area. At pH 10.0, PDEAEMA became water‐insoluble, and the MBBs desorbed from the interface, causing de‐emulsification. Consequently, we have shown that the judicious design of MBBs can generate properties of particle emulsifiers from their large size, while the responsiveness of the MBBs enables more potential applications.

     
    more » « less
  4. pH-responsive polymeric nanoparticles are an exciting class of stimuli-responsive materials that can respond to changes in pH and, as a result, have been developed for numerous applications in biomedicine, such as the loading and delivery of various cargoes. One common transformation is nanoparticle swelling due to the protonation or deprotonation of specific side chain moieties in the polymer structure. When the pH trigger is removed, the swelling can be reversed, and this process can be continually cycled by adjusting the pH. In this work, we are leveraging this swelling–deswelling–reswelling mechanism to develop a simple, fast, and easy loading strategy for a class of cross-linked polymeric nanoparticles, poly-2-(diethylamino) ethyl methacrylate (pDEAEMA), that can reversibly swell below pH 7.3, and a dye, rhodamine B isothiocyanate (RITC), as a proof-of-concept cargo molecule while comparing to poly(methyl methacrylate) (pMMA) nanoparticles as a nonswelling control. A free radical polymerization was used to generate pDEAEMA nanoparticles at three different sizes by varying the synthesis temperature. Their pH-dependent swelling and deswelling were extensively characterized using dynamic light scattering and transmission electron microscopy, which revealed a reversible increase in size for pDEAEMA nanoparticles in acidic media, whereas pMMA nanoparticles remain constant. Following dye loading, pDEAEMA nanoparticles show significant fluorescence intensity when compared to pMMA nanoparticles, suggesting that the reversible swelling is key for successful loading. Upon acidic treatment, there is a significant decrease in the fluorescence intensity when compared to the dye-loaded nanoparticles in basic media, which could be due to dilution of the dye when released in the acidic medium solution. Interestingly, nanoparticle size had no impact on dye loading properties, suggesting that the dye molecules only go so far into the polymer nanoparticle. Additionally, confocal microscopy images reveal pDEAEMA nanoparticles with higher RITC fluorescence intensity in acidic media but a lower RITC fluorescence intensity in basic media, while pMMA nanoparticles show no differences. Together, these results showcase a size reversibility-driven cargo loading mechanism that has the potential to be applied to other beneficial cargoes and for various applications. 
    more » « less
  5. Abstract

    Poly 2‐vinyl‐4,4‐dimethylazlactone (PVDMA) has received much attention as a “reactive platform” to prepare charge‐shifting polycations via post‐polymerization modification with tertiary amines that possess primary amine or hydroxyl reactive handles. Upon hydrolysis of the resulting amide or ester linkages, the polymers can undergo a gradual transition in net charge from cationic to anionic. Herein, a systematic investigation of the hydrolysis rate of PVDMA‐derived charge‐shifting polymers is described. PVDMA is modified with tertiary amines bearing either primary amine, hydroxyl, or thiol reactive handles. The resulting polymers possess tertiary amine side chains connected to the backbone via amide, ester, or thioester linkages. The hydrolysis rates of each PVDMA derivative are monitored at 25 and 50 °C at pH values of 5.5, 7.5, and 8.5, respectively. While the hydrolysis rate of the amide‐functionalized PVDMA is negligible over the period investigated, the hydrolysis rates of the ester‐ and thioester‐functionalized PVDMA increase with increasing temperature and pH. Interestingly, the hydrolysis rate of the thioester‐functionalized PVDMA appears to be more rapid than the ester‐functionalized PVDMA at all pH values and temperatures investigated. It is believed that these results can be utilized to inform the future preparation of PVDMA‐based charge‐shifting polymers for biomedical applications.

     
    more » « less