skip to main content


Search for: All records

Award ID contains: 2004564

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper( i )-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN) 6 ] 3− and [Fe(CN)6] 4− , moderate CAs PF 6 − and ClO 4 − , weak CA I − , and for comparison, kosmotropic anion SO 4 2− . At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderate CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I − and SO 4 2− had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    This article reports on the conformational behavior of binary heterografted three-arm star molecular bottlebrushes composed of poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA, the brushes denoted as SMB-1) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA, the brushes denoted as SMB-2) side chains in aqueous solutions in response to pH changes and addition of salts containing chaotropic anions (CAs). PEO was introduced into the brushes as a stabilizer when the tertiary amine-containing side chains collapsed. While a small size decrease of SMB-1 was observed with increasing pH from acidic to basic, SMB-2 exhibited a large and abrupt size transition caused by the pH-induced solubility change of PDEAEMA. Atomic force microscopy imaging revealed a star-to-globule shape transition of SMB-2 upon increasing pH across the p K a ; in contrast, SMB-1 stayed in the starlike state at both low and high pH values. Intriguingly, both SMB-1 and -2 displayed star-to-globule shape transitions in acidic solutions upon addition of salts containing sufficiently strong CAs such as ClO 4 − , with SMB-2 showing a greater sensitivity to moderate CAs than SMB-1. Moreover, superchaotropic anions ( e.g. , Fe(CN) 6 3− and S 2 O 8 2− ) were significantly more efficient in inducing shape changing than common CAs. The CA-induced shape transitions resulted from the ion pairing of CAs and protonated tertiary amine groups and the high propensity of CAs to associate with hydrophobic moieties in the brushes, which decreased the solubility of the tertiary amine-containing side chains and caused the brushes to collapse. The findings reported here may enable potential applications of molecular bottlebrushes in, e.g. , encapsulation and release of ionic substances. 
    more » « less