- Award ID(s):
- 1750024
- PAR ID:
- 10232060
- Date Published:
- Journal Name:
- USENIX Security Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
For the past decade, botnets have dominated network attacks in spite of significant research advances in defending against them. The distributed attack sources, the network size, and the diverse botnet attack techniques challenge the effectiveness of a single-point centralized security solution. This paper proposes a distributed security system against largescale disruptive botnet attacks by using SDN/NFV and machinelearning. In our system, a set of distributed network functions detect network attacks for each protocol and to collect real-time traffic information, which also gets relayed to the SDN controller for more sophisticated analyses. The SDN controller then analyzes the real-time traffic with the only forwarded information using machine learning and updates the flow rule or take routing/bandwidth-control measures, which get executed on the nodes implementing the security network functions. Our evaluations show the proposed system to be an efficient and effective defense method against botnet attacks. The evaluation results demonstrated that the proposed system detects large-scale distributed network attacks from botnets at the SDN controller while the network functions locally detect known attacks across different networking protocols.more » « less
-
For the past decade, botnets have dominated network attacks in spite of significant research advances in defending against them. The distributed attack sources, the network size, and the diverse botnet attack techniques challenge the effectiveness of a single-point centralized security solution. This paper proposes a distributed security system against large-scale disruptive botnet attacks by using SDN/NFV and machine-learning. In our system, a set of distributed network functions detect network attacks for each protocol and to collect real-time traffic information, which also gets relayed to the SDN controller for more sophisticated analyses. The SDN controller then analyzes the real-time traffic with the only forwarded information using machine learning and updates the flow rule or take routing/bandwidth-control measures, which get executed on the nodes implementing the security network functions. Our evaluations show the proposed system to be an efficient and effective defense method against botnet attacks. The evaluation results demonstrated that the proposed system detects large-scale distributed network attacks from botnets at the SDN controller while the network functions locally detect known attacks across different networking protocols.more » « less
-
null (Ed.)In recent years, smart grid communications (SGC) has evolved to use new technologies not only for data delivery but also for enhanced smart grid (SG) security and reliability. Software Defined Networks (SDN) has proved to be a reliable and efficient architecture for handling diverse communication systems due to their ability to divide responsibilities of the network using control plane and data plane. This paper presents a graph learning approach for detecting and identifying Distributed Denial of Service (DDoS) attacks in SDN-SGC systems (GLASS). GLASS is a two phase framework that (1) detects if SDN-SGC is under DDoS attack using supervised graph deep learning and then (2) identifies the compromised entities using unsupervised learning methods. Network performance statistics are used for modeling SDN-SGC graphs, which train Graph Convolutional Neural Networks (GCN) to extract latent representations caused by DDoS attacks. Finally, spectral clustering is used to identify compromised entities. The experimental results, obtained by analysis of an IEEE 118-bus system, show the average throughput for compromised entities is able to maintain 84% of normal traffic level with GLASS, compared to achieving only 4% of normal throughput caused by DDoS attacks on compromised entities without the GLASS framework.more » « less
-
Software-Defined Networking (SDN) is a dynamic, and manageable network architecture which is more cost-effective than existing network architectures. The idea behind this architecture is to centralize intelligence from the network hardware and funnel this intelligence to the management system (controller) [2]-[4]. Since the centralized SDN controller controls the entire network and manages policies and the flow of the traffic throughout the network, it can be considered as the single point of failure [1]. It is important to find some ways to identify different types of attacks on the SDN controller [8]. Distributed Denial of Service (DDoS) attack is one of the most dangerous attacks on SDN controller. In this work, we implement DDoS attack on the Ryu controller in a tree network topology using Mininet emulator. Also, we use a machine learning method, Vector Machines (SVM) to detect DDoS attack. We propose to install flows in switches, and we consider time attack pattern of the DDoS attack for detection. Simulation results show the effects of DDoS attacks on the Ryu controller is reduced by 36% using our detection method.more » « less
-
Distributed denial of service (DDoS) attacks have been prevalent on the Internet for decades. Albeit various defenses, they keep growing in size, frequency, and duration. The new network paradigm, Software-defined networking (SDN), is also vulnerable to DDoS attacks. SDN uses logically centralized control, bringing the advantages in maintaining a global network view and simplifying programmability. When attacks happen, the control path between the switches and their associated controllers may become congested due to their limited capacity. However, the data plane visibility of SDN provides new opportunities to defend against DDoS attacks in the cloud computing environment. To this end, we conduct measurements to evaluate the throughput of the software control agents on some of the hardware switches when they are under attacks. Then, we design a new mechanism, called
Scotch , to enable the network to scale up its capability and handle the DDoS attack traffic. In our design, the congestion works as an indicator to trigger the mitigation mechanism.Scotch elastically scales up the control plane capacity by using an Open vSwitch-based overlay.Scotch takes advantage of both the high control plane capacity of a large number of vSwitches and the high data plane capacity of commodity physical switches to increase the SDN network scalability and resiliency under abnormal (e.g., DDoS attacks) traffic surges. We have implemented a prototype and experimentally evaluatedScotch . Our experiments in the small-scale lab environment and large-scale GENI testbed demonstrate thatScotch can elastically scale up the control channel bandwidth upon attacks.