skip to main content


Title: Distributed Security Network Functions against Botnet Attacks in Software-defined Networks
For the past decade, botnets have dominated network attacks in spite of significant research advances in defending against them. The distributed attack sources, the network size, and the diverse botnet attack techniques challenge the effectiveness of a single-point centralized security solution. This paper proposes a distributed security system against large-scale disruptive botnet attacks by using SDN/NFV and machine-learning. In our system, a set of distributed network functions detect network attacks for each protocol and to collect real-time traffic information, which also gets relayed to the SDN controller for more sophisticated analyses. The SDN controller then analyzes the real-time traffic with the only forwarded information using machine learning and updates the flow rule or take routing/bandwidth-control measures, which get executed on the nodes implementing the security network functions. Our evaluations show the proposed system to be an efficient and effective defense method against botnet attacks. The evaluation results demonstrated that the proposed system detects large-scale distributed network attacks from botnets at the SDN controller while the network functions locally detect known attacks across different networking protocols.  more » « less
Award ID(s):
1723804
NSF-PAR ID:
10095801
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For the past decade, botnets have dominated network attacks in spite of significant research advances in defending against them. The distributed attack sources, the network size, and the diverse botnet attack techniques challenge the effectiveness of a single-point centralized security solution. This paper proposes a distributed security system against largescale disruptive botnet attacks by using SDN/NFV and machinelearning. In our system, a set of distributed network functions detect network attacks for each protocol and to collect real-time traffic information, which also gets relayed to the SDN controller for more sophisticated analyses. The SDN controller then analyzes the real-time traffic with the only forwarded information using machine learning and updates the flow rule or take routing/bandwidth-control measures, which get executed on the nodes implementing the security network functions. Our evaluations show the proposed system to be an efficient and effective defense method against botnet attacks. The evaluation results demonstrated that the proposed system detects large-scale distributed network attacks from botnets at the SDN controller while the network functions locally detect known attacks across different networking protocols. 
    more » « less
  2. The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems. 
    more » « less
  3. Software-Defined Networking (SDN) is a dynamic, and manageable network architecture which is more cost-effective than existing network architectures. The idea behind this architecture is to centralize intelligence from the network hardware and funnel this intelligence to the management system (controller) [2]-[4]. Since the centralized SDN controller controls the entire network and manages policies and the flow of the traffic throughout the network, it can be considered as the single point of failure [1]. It is important to find some ways to identify different types of attacks on the SDN controller [8]. Distributed Denial of Service (DDoS) attack is one of the most dangerous attacks on SDN controller. In this work, we implement DDoS attack on the Ryu controller in a tree network topology using Mininet emulator. Also, we use a machine learning method, Vector Machines (SVM) to detect DDoS attack. We propose to install flows in switches, and we consider time attack pattern of the DDoS attack for detection. Simulation results show the effects of DDoS attacks on the Ryu controller is reduced by 36% using our detection method. 
    more » « less
  4. A centralized Software-defined Network (SDN) controller, due to its nature, faces many issues such as a single point of failure, computational complexity growth, different types of attacks, reliability challenges and scalability concerns. One of the most common fifth generation cyber-attacks is the Distributed Denial of Service (DDoS) attack. Having a single SDN controller can lead to a plethora of issues with respect to latency, computational complexity in the control plane, reachability, and scalability as the network scale increases. To address these issues, state-of-the-art approaches have investigated multiple SDN controllers in the network. The placement of these multiple controllers has drawn more attention in recent studies. In our previous work, we evaluated an Entropy-based technique and a machine learning-based Support Vector Machine (SVM) to detect DDoS using a single SDN controller. In this paper, we extend our previous work to further decrease the impact of the DDoS attacks on the SDN controller. Our new technique called Hierarchical Classic Controllers (HCC) uses SVM and Entropy methods to detect abnormal traffic which can lead to network failures caused by overwhelming a single controller. Determining the number of controllers and their best placement are major contributions in our new method. Our results show that the combination of the above three methods (HCC with SVM and Entropy), in the case of a network with 3 controllers provides greater accuracy and improves the DDoS attack detection rate to 86.12% compared to 79.03% and 81.33% using Entropy-based HCC and SVM-based HCC, respectively. 
    more » « less
  5. Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms a single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks. 
    more » « less