skip to main content


Title: Dust coagulation feedback on magnetohydrodynamic resistivities in protostellar collapse
Context. The degree of coupling between the gas and the magnetic field during the collapse of a core and the subsequent formation of a disk depends on the assumed dust size distribution. Aims. We study the impact of grain–grain coagulation on the evolution of magnetohydrodynamic (MHD) resistivities during the collapse of a prestellar core. Methods. We use a 1D model to follow the evolution of the dust size distribution, out-of-equilibrium ionisation state, and gas chemistry during the collapse of a prestellar core. To compute the grain–grain collisional rate, we consider models for both random and systematic, size-dependent, velocities. We include grain growth through grain–grain coagulation and ice accretion, but ignore grain fragmentation. Results. Starting with a Mathis-Rumpl-Nordsieck (MRN) size distribution (Mathis et al. 1977, ApJ, 217, 425), we find that coagulation in grain–grain collisions generated by hydrodynamical turbulence is not efficient at removing the smallest grains and, as a consequence, does not have a large effect on the evolution of the Hall and ambipolar diffusion MHD resistivities, which still drop significantly during the collapse like in models without coagulation. The inclusion of systematic velocities, possibly induced by the presence of ambipolar diffusion, increases the coagulation rate between small and large grains, removing small grains earlier in the collapse and therefore limiting the drop in the Hall and ambipolar diffusion resistivities. At intermediate densities ( n H ~ 10 8 cm −3 ), the Hall and ambipolar diffusion resistivities are found to be higher by 1 to 2 orders of magnitude in models with coagulation than in models where coagulation is ignored, and also higher than in a toy model without coagulation where all grains smaller than 0.1 μ m would have been removed in the parent cloud before the collapse. Conclusions. When grain drift velocities induced by ambipolar diffusion are included, dust coagulation happening during the collapse of a prestellar core starting from an initial MRN dust size distribution appears to be efficient enough to increase the MHD resistivities to the values necessary to strongly modify the magnetically regulated formation of a planet-forming disk. A consistent treatment of the competition between fragmentation and coagulation is, however, necessary before reaching firm conclusions.  more » « less
Award ID(s):
1852787
NSF-PAR ID:
10232149
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
643
ISSN:
0004-6361
Page Range / eLocation ID:
A17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Non-ideal magnetohydrodynamic (MHD) effects have been shown recently as a robust mechanism of averting the magnetic braking ‘catastrophe’ and promoting protostellar disc formation. However, the magnetic diffusivities that determine the efficiency of non-ideal MHD effects are highly sensitive to microphysics. We carry out non-ideal MHD simulations to explore the role of microphysics on disc formation and the interplay between ambipolar diffusion (AD) and Hall effect during the protostellar collapse. We find that removing the smallest grain population (≲10 nm) from the standard MRN size distribution is sufficient for enabling disc formation. Further varying the grain sizes can result in either a Hall-dominated or an AD-dominated collapse; both form discs of tens of au in size regardless of the magnetic field polarity. The direction of disc rotation is bimodal in the Hall-dominated collapse but unimodal in the AD-dominated collapse. We also find that AD and Hall effect can operate either with or against each other in both radial and azimuthal directions, yet the combined effect of AD and Hall is to move the magnetic field radially outward relative to the infalling envelope matter. In addition, microphysics and magnetic field polarity can leave profound imprints both on observables (e.g. outflow morphology, disc to stellar mass ratio) and on the magnetic field characteristics of protoplanetary discs. Including Hall effect relaxes the requirements on microphysics for disc formation, so that prestellar cores with cosmic ray ionization rate of ≲2–3 × 10−16 s−1 can still form small discs of ≲10 au radius. We conclude that disc formation should be relatively common for typical prestellar core conditions, and that microphysics in the protostellar envelope is essential to not only disc formation, but also protoplanetary disc evolution. 
    more » « less
  2. Dust grains influence many aspects of star formation, including planet formation and the opacities for radiative transfer, chemistry, and the magnetic field via Ohmic, Hall, as well as ambipolar diffusion. The size distribution of the dust grains is the primary characteristic influencing all these aspects. Grain size increases by coagulation throughout the star formation process. In this work, we describe numerical simulations of protostellar collapse using methods described in earlier papers of this series. We compute the evolution of the grain size distribution from coagulation and the non-ideal magnetohydrodynamics effects self-consistently and at low numerical cost. We find that the coagulation efficiency is mostly affected by the time spent in high-density regions. Starting from sub-micron radii, grain sizes reach more than 100 µm in an inner protoplanetary disk that is only 1000 yr old. We also show that the growth of grains significantly affects the resistivities, while also having an indirect effect on the dynamics and angular momentum of the disk. 
    more » « less
  3. Dust grains play a major role in many astrophysical contexts. They affect the chemical, magnetic, dynamical, and optical properties of their environment, from galaxies down to the interstellar medium, star-forming regions, and protoplanetary disks. Their coagulation leads to shifts in their size distribution and ultimately to the formation of planets. However, although the coagulation process is reasonably uncomplicated to numerically implement by itself, it is difficult to couple it with multidimensional hydrodynamics numerical simulations because of its high computational cost. We propose here a simple method for tracking the coagulation of grains at far lower cost. Given an initial grain size distribution, the state of the distribution at time t is solely determined by the value of a single variable integrated along the trajectory, independently of the specific path taken by the grains. Although this method cannot account for processes other than coagulation, it is mathematically exact, fast, inexpensive, and can be used to evaluate the effect of grain coagulation in most astrophysical contexts. It is applicable to all coagulation kernels in which local physical conditions and grain properties can be separated. We also describe another method for calculating the average electric charge of grains and the density of ions and electrons in environments that are shielded from radiation fields, given the density and temperature of the gas, the cosmic-ray ionization rate, and the average mass of the ions. The equations we provide are fast to integrate numerically and can be used in multidimensional numerical simulations to self-consistently calculate on the fly the local resistivities that are required to model nonideal magnetohydrodynamics. 
    more » « less
  4. ABSTRACT The Hall effect is recently shown to be efficient in magnetized dense molecular cores and could lead to a bimodal formation of rotationally supported discs (RSDs) in the first core phase. However, how such Hall dominated systems evolve in the protostellar accretion phase remains unclear. We carry out 2D axisymmetric simulations including Hall effect and ohmic dissipation, with realistic magnetic diffusivities computed from our equilibrium chemical network. We find that Hall effect only becomes efficient when the large population of very small grains (VSGs: ≲100 Å) is removed from the standard Mathis–Rumpl–Nordsieck size distribution. With such an enhanced Hall effect, however, the bimodality of disc formation does not continue into the main accretion phase. The outer part of the initial ∼40 au disc formed in the anti-aligned configuration ($\boldsymbol {\Omega \cdot B}\lt 0$) flattens into a thin rotationally supported Hall current sheet as Hall effect moves the poloidal magnetic field radially inward relative to matter, leaving only the inner ≲10–20 au RSD. In the aligned configuration ($\boldsymbol {\Omega \cdot B}\gt 0$), disc formation is suppressed initially but a counter-rotating disc forms subsequently due to efficient azimuthal Hall drift. The counter-rotating disc first grows to ∼30 au as Hall effect moves the magnetic field radially outward, but only the inner ≲10 au RSD is long lived like in the anti-aligned case. Besides removing VSGs, cosmic ray ionization rate should be below a few 10−16 s−1 for Hall effect to be efficient in disc formation. We conclude that Hall effect produces small ≲10–20 au discs regardless of the polarity of the magnetic field, and that radially outward diffusion of magnetic fields remains crucial for disc formation and growth. 
    more » « less
  5. ABSTRACT

    Radial substructures have now been observed in a wide range of protoplanetary discs (PPDs), from young to old systems; however, their formation is still an area of vigorous debate. Recent magnetohydrodynamic (MHD) simulations have shown that rings and gaps can form naturally in PPDs when non-ideal MHD effects are included. However, these simulations employ ad hoc approximations to the magnitudes of the magnetic diffusivities in order to facilitate ring growth. We replace the parametrization of these terms with a simple chemical network and grain distribution model to calculate the non-ideal effects in a more self-consistent way. We use a range of grain distributions to simulate grain formation for different disc conditions. Including ambipolar diffusion, we find that large grain populations (>1 $\mu$m), and those including a population of very small polyaromatic hydrocarbons (PAHs) facilitate the growth of periodic, stable rings, while intermediate-sized grains suppress ring formation. Including Ohmic diffusion removes the positive influence of PAHs, with only large grain populations still producing periodic ring and gap structures. These results relate closely to the degree of coupling between the magnetic field and the neutral disc material, quantified by the non-dimensional Elsasser number Λ (the ratio of magnetic forces to Coriolis force). For both the ambipolar-only and ambipolar-ohmic cases, if the total Elsasser number is initially of the order of unity along the disc mid-plane, ring and gap structures may develop.

     
    more » « less