Abstract Ice‐nucleating particles (INPs) play a key role in ice formation and cloud microphysics and thus significantly impact the water cycle and the climate. However, our understanding of atmospheric INPs, particularly their sources, emissions, and spatiotemporal variability, is incomplete. While the enhancement of atmospheric INP concentrations with rainfall has been previously shown, a mechanistic understanding of the process is lacking. Here, we link detailed precipitation observations with near‐surface atmospheric INP concentrations at a semiarid grassland site in Colorado. Considering the during‐precipitation air samples, INP concentrations positively correlate with cumulative rainfall kinetic energy and amount, suggesting that INP aerosolization is induced by raindrop and hailstone impact. By additionally analyzing the INP content of precipitation water, terrestrial source samples, and heat‐treated samples, we demonstrate that local plants are the most plausible source of rain‐induced INPs during a precipitation event. Should INPs aerosolized by precipitation rise to cloud height, they could influence cloud ice fraction and initiate precipitation resulting in an aerosol‐cloud‐precipitation feedback.
more »
« less
Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments
Abstract. Ice-nucleating particles (INPs) are efficiently removed fromclouds through precipitation, a convenience of nature for the study of thesevery rare particles that influence multiple climate-relevant cloudproperties including ice crystal concentrations, size distributions andphase-partitioning processes. INPs suspended in precipitation can be used toestimate in-cloud INP concentrations and to infer their originalcomposition. Offline droplet assays are commonly used to measure INPconcentrations in precipitation samples. Heat and filtration treatmentsare also used to probe INP composition and size ranges. Many previousstudies report storing samples prior to INP analyses, but little is knownabout the effects of storage on INP concentration or their sensitivity totreatments. Here, through a study of 15 precipitation samples collected at acoastal location in La Jolla, CA, USA, we found INP concentration changes upto > 1 order of magnitude caused by storage to concentrations ofINPs with warm to moderate freezing temperatures (−7 to−19 ∘C). We compared four conditions: (1) storage at roomtemperature (+21–23 ∘C), (2) storage at +4 ∘C, (3) storage at −20 ∘C and (4) flash-freezing samples with liquid nitrogen prior to storage at −20 ∘C. Results demonstrate that storage can lead to bothenhancements and losses of greater than 1 order of magnitude, withnon-heat-labile INPs being generally less sensitive to storage regime, butsignificant losses of INPs smaller than 0.45 µm in all tested storageprotocols. Correlations between total storage time (1–166 d) and changesin INP concentrations were weak across sampling protocols, with theexception of INPs with freezing temperatures ≥ −9 ∘C in samples stored at room temperature. We provide thefollowing recommendations for preservation of precipitation samples fromcoastal or marine environments intended for INP analysis: that samples bestored at −20 ∘C to minimize storage artifacts, thatchanges due to storage are likely an additional uncertainty in INPconcentrations, and that filtration treatments be applied only to freshsamples. At the freezing temperature −11 ∘C, average INPconcentration losses of 51 %, 74 %, 16 % and 41 % were observed foruntreated samples stored using the room temperature, +4, −20 ∘C, and flash-frozen protocols, respectively.Finally, the estimated uncertainties associated with the four storage protocolsare provided for untreated, heat-treated and filtered samples for INPsbetween −9 and −17 ∘C.
more »
« less
- Award ID(s):
- 1801971
- PAR ID:
- 10232158
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 6473 to 6486
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Ice-nucleating particles (INPs) initiate primary ice formation in Arctic mixed-phase clouds (MPCs), altering cloud radiative properties and modulating precipitation. For atmospheric INPs, the complexity of their spatiotemporal variations, heterogeneous sources, and evolution via intricate atmospheric interactions challenge the understanding of their impact on microphysical processes in Arctic MPCs and induce an uncertain representation in climate models. In this work, we performed a comprehensive analysis of atmospheric aerosols at the Arctic coastal site in Ny-Ålesund (Svalbard, Norway) from October to November 2019, including their ice nucleation ability, physicochemical properties, and potential sources. Overall, INP concentrations (NINP) during the observation season were approximately up to 3 orders of magnitude lower compared to the global average, with several samples showing degradation of NINP after heat treatment, implying the presence of proteinaceous INPs. Particle fluorescence was substantially associated with INP concentrations at warmer ice nucleation temperatures, indicating that in the far-reaching Arctic, aerosols of biogenic origin throughout the snow- and ice-free season may serve as important INP sources. In addition, case studies revealed the links between elevated NINP and heat lability, fluorescence, high wind speeds originating from the ocean, augmented concentration of coarse-mode particles, and abundant organics. Backward trajectory analysis demonstrated a potential connection between high-latitude dust sources and high INP concentrations, while prolonged air mass history over the ice pack was identified for most scant INP cases. The combination of the above analyses demonstrates that the abundance, physicochemical properties, and potential sources of INPs in the Arctic are highly variable despite its remote location.more » « less
-
Abstract Cirrus ice crystals are produced heterogeneously on ice‐nucleating particles (INPs) and homogeneously in supercooled liquid solution droplets. They grow by uptake of water molecules from the ice‐supersaturated vapor. The precursor particles, characterized by disparate ice nucleation abilities and number concentrations, compete for available vapor during ice formation events. We investigate cirrus formation events systematically in different temperature and updraft regimes, and for different INP number concentrations and time‐independent nucleation efficiencies. We consider vertical air motion variability due to mesoscale gravity waves and effects of supersaturation‐dependent deposition coefficients for water molecules on ice surfaces. We analyze ice crystal properties to better understand the dynamics of competing nucleation processes. We study the reduction of ice crystal numbers produced by homogeneous freezing due to INPs in both, individual simulations assuming constant updraft speeds and in ensemble simulations based on a stochastic representation of vertical wind speed fluctuations. We simulate and interpret probability distributions of total nucleated ice crystal number concentrations, showing signatures of homogeneous and heterogeneous nucleation. At typically observed, mean updraft speeds (≈15 cm s−1) competing nucleation should occur frequently, even at rather low INP number concentrations (<10 L−1). INPs increase cirrus occurrence and may alter cirrus microphysical properties without entirely suppressing homogeneous freezing events. We suggest to improve ice growth models, especially for low cirrus temperatures (<220 K) and low ice supersaturation (<0.3).more » « less
-
Abstract. Ice-nucleating particles (INPs) represent a rare subset of aerosol particlesthat initiate cloud droplet freezing at temperatures above the homogenousfreezing point of water (−38 ∘C). Considering that the oceancovers 71 % of the Earth's surface and represents a large potential sourceof INPs, it is imperative that the identities, properties and relativeemissions of ocean INPs become better understood. However, the specificunderlying drivers of marine INP emissions remain largely unknown due tolimited observations and the challenges associated with isolating rare INPs. Bygenerating isolated nascent sea spray aerosol (SSA) over a range ofbiological conditions, mesocosm studies have shown that marine microbes cancontribute to INPs. Here, we identify 14 (30 %) cultivable halotolerantice-nucleating microbes and fungi among 47 total isolates recovered fromprecipitation and aerosol samples collected in coastal air in southernCalifornia. Ice-nucleating (IN) isolates collected in coastal air were nucleated ice fromextremely warm to moderate freezing temperatures (−2.3 to −18 ∘C). While some Gammaproteobacteria and fungi are known to nucleate ice attemperatures as high as −2 ∘C, Brevibacterium sp. is the first Actinobacteriafound to be capable of ice nucleation at a relatively high freezingtemperature (−2.3 ∘C). Air mass trajectory analysis demonstratesthat marine aerosol sources were dominant during all sampling periods, andphylogenetic analysis indicates that at least 2 of the 14 IN isolates areclosely related to marine taxa. Moreover, results from cell-washingexperiments demonstrate that most IN isolates maintained freezing activityin the absence of nutrients and cell growth media. This study supportsprevious studies that implicated microbes as a potential source of marineINPs, and it additionally demonstrates links between precipitation, marineaerosol and IN microbes.more » « less
-
Gralnick, Jeffrey A. (Ed.)ABSTRACT Field studies are central to environmental microbiology and microbial ecology, because they enable studies of natural microbial communities. Metaproteomics, the study of protein abundances in microbial communities, allows investigators to study these communities “ in situ ,” which requires protein preservation directly in the field because protein abundance patterns can change rapidly after sampling. Ideally, a protein preservative for field deployment works rapidly and preserves the whole proteome, is stable in long-term storage, is nonhazardous and easy to transport, and is available at low cost. Although these requirements might be met by several protein preservatives, an assessment of their suitability under field conditions when targeted for metaproteomic analyses is currently lacking. Here, we compared the protein preservation performance of flash freezing and the preservation solution RNA later using the marine gutless oligochaete Olavius algarvensis and its symbiotic microbes as a test case. In addition, we evaluated long-term RNA later storage after 1 day, 1 week, and 4 weeks at room temperature (22°C to 23°C). We evaluated protein preservation using one-dimensional liquid chromatography-tandem mass spectrometry. We found that RNA later and flash freezing preserved proteins equally well in terms of total numbers of identified proteins and relative abundances of individual proteins, and none of the test time points was altered, compared to time zero. Moreover, we did not find biases against specific taxonomic groups or proteins with particular biochemical properties. Based on our metaproteomic data and the logistical requirements for field deployment, we recommend RNA later for protein preservation of field-collected samples targeted for metaproteomic analyses. IMPORTANCE Metaproteomics, the large-scale identification and quantification of proteins from microbial communities, provide direct insights into the phenotypes of microorganisms on the molecular level. To ensure the integrity of the metaproteomic data, samples need to be preserved immediately after sampling to avoid changes in protein abundance patterns. In laboratory setups, samples for proteomic analyses are most commonly preserved by flash freezing; however, liquid nitrogen or dry ice is often unavailable at remote field locations, due to their hazardous nature and transport restrictions. Our study shows that RNA later can serve as a low-hazard, easy-to-transport alternative to flash freezing for field preservation of samples for metaproteomic analyses. We show that RNA later preserves the metaproteome equally well, compared to flash freezing, and protein abundance patterns remain stable during long-term storage for at least 4 weeks at room temperature.more » « less
An official website of the United States government

