skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simplified equations for lower crustal flow driven by lateral pressure gradients
SUMMARY Evidence from seismology, geology and geodynamic studies suggests that regional-scale lower crustal flow occurs in many tectonic settings. Pressure gradients caused by mantle processes and crustal density heterogeneity can provide driving force for lower crustal flow. Numerically modelling such flow can be computationally expensive. However, by exploiting symmetry in the physical system, it is possible to represent the vertical component of flow in terms of its lateral components, thereby reducing the problem’s spatial dimension by one. Here, we present a mathematical formulation for flow in a viscous channel below an elastic upper plate, which is optimized for solution by common numerical methods. Our formulation drastically reduces the computational load required to simulate lower crustal flow over large areas and long timescales. We apply this model to two example problems, with and without an elastic upper plate, identifying combinations of parameters that are capable of generating measurable geologic uplift.  more » « less
Award ID(s):
1727451
PAR ID:
10232212
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
226
Issue:
2
ISSN:
0956-540X
Page Range / eLocation ID:
1036 to 1044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Buoyancy anomalies within Earth’s mantle create large convective currents that are thought to control the evolution of the lithosphere. While tectonic plate motions provide evidence for this relation, the mechanism by which mantle processes influence near-surface tectonics remains elusive. Here, we present an azimuthal anisotropy model for the Pacific Northwest crust that strongly correlates with high-velocity structures in the underlying mantle but shows no association with the regional mantle flow field. We suggest that the crustal anisotropy is decoupled from horizontal basal tractions and, instead, created by upper mantle vertical loading, which generates pressure gradients that drive channelized flow in the mid-lower crust. We then demonstrate the interplay between mantle heterogeneities and lithosphere dynamics by predicting the viscous crustal flow that is driven by local buoyancy sources within the upper mantle. Our findings reveal how mantle vertical load distribution can actively control crustal deformation on a scale of several hundred kilometers. 
    more » « less
  2. Abstract Although the surface deformation of tectonic plate boundaries is well determined by geological and geodetic measurements, the pattern of flow below the lithosphere remains poorly constrained. We use the crustal velocity field of the Plate Boundary Observatory to illuminate the distribution of horizontal flow beneath the California margin. At lower-crustal and upper-mantle depths, the boundary between the Pacific and North American plates is off-centered from the San Andreas fault, concentrated in a region that encompasses the trace of nearby active faults. A major step is associated with return flow below the Eastern California Shear Zone, leading to the extrusion of the Mojave block and a re-distribution of fault activity since the Pleistocene. Major earthquakes in California have occurred above the regions of current plastic strain accumulation. Deformation is mechanically coupled from the crust to the asthenosphere, with mantle flow overlaid by a kinematically consistent network of faults in the brittle crust. 
    more » « less
  3. The southern Cascadia forearc undergoes a three-stage tectonic evolution, each stage involving different combinations of tectonic drivers, that produce differences in the upper-plate deformation style. These drivers include subduction, the northward migration of the Mendocino triple junction and associated thickening and thinning related to the Mendocino Crustal Conveyor (MCC) effect, and the NNW translation of the Sierra Nevada-Great Valley (SNGV) block. We combine geodetic data, plate reconstructions, seismic tomography and topographic observations to determine how the southern Cascadia upper plate is deforming in response to the combined effects of subduction and NNW-directed (MCC- and SNGV-related) tectonic processes. The location of the terrane boundaries between the relatively weak Franciscan complex and the stronger Klamath Mountain province (KMP) and SNGV block has been a key control on the style of upper-plate deformation in the southern Cascadia forearc since the mid-Miocene. At ∼15 Ma, present-day southern Cascadia was in central Cascadia and deformation there was principally controlled by subduction processes. Since ∼5 Ma, this region of the Cascadia upper plate, where the KMP lies inboard of the Franciscan complex, has been deforming in response to both subduction and MCC- and SNGV-related effects. GPS data show that the KMP is currently moving to the NNW at ∼8–12 mm/yr with little internal deformation, largely in response to the northward push of the SNGV block at its southern boundary. In contrast, the Franciscan complex is accommodating high NNW-directed and NE-directed shortening strain produced by MCC-related shortening and subduction coupling respectively. This composite tectonic regime can explain the style of faulting within and west of the KMP. Associated with this Mendocino Crustal Conveyor crustal thickening, seismic tomography imagery shows a region of low velocity material that we interpret to represent crustal flow and injection of Franciscan crust into the KMP at intracrustal levels. We suggest that this MCC-related crustal flow and injection of material into the KMP is a relatively young feature (post ∼5 Ma) and is driving a rejuvenated period of rock uplift within the KMP. This scenario provides a potential explanation for steep channels and high relief, suggestive of rapid erosion rates within the interior of the KMP. 
    more » « less
  4. Abstract The details of subduction zone locking place constraints on the characteristics of megathrust events. Due to the lack of significant present‐day seismicity along the Cascadia subduction interface, geodetic data are used to assess subduction locking along the margin. We isolate the subduction signal from other tectonic signals within the Cascadia GPS field, to assess the details of plate‐interface locking. Apparent coupling determined by a simple homogenous elastic half‐space inversion cannot everywhere reproduce the subduction component of the GPS field. Consequently, we explore the relationships among upper‐plate strength, locking depth and the resulting surface velocity signal using 2D finite element models. When the upper plate is composed of a weak material, trenchward of a strong backstop, we find that the down‐dip limit of locking relative to the location of the weak‐to‐strong transition controls how upper‐plate deformation is spatially distributed. If locking extends into the stronger material, as observed in central Cascadia, the surface velocity field propagates farther inland than expected from a simple homogeneous elastic model. In contrast, in southern Cascadia, because locking terminates within the weak accretionary margin, upper‐plate shortening is localized within the weaker material, particularly in the region between the end of locking and the strong Klamath terrane. This behavior provides a possible mechanism for producing the high (geodetic and permanent) uplift rates, plate‐motion‐parallel shortening, and crustal exhumation observed in many active and fossil subduction zones. 
    more » « less
  5. Abstract The Southern Puna plateau in the central Andes has a complicated tectonic history that includes episodes of distributed shortening and extension, lithospheric delamination, uplift and Quaternary backarc volcanism. In this study, the upper crustal structure and present‐day deformation in this area is investigated using a new regional earthquake catalog derived with a deep‐learning‐based phase picker. Results show abundant strike‐slip seismicity at shallow depths in the eastern Southern Puna plateau that reveals active fault systems in the area and indicates N‐S extension/E‐W compression that changes orientation and relative magnitude from north to south. A broad zone of seismic quiescence in the western plateau may indicate a zone of upper crustal decoupling from large‐scale deformation. The region separating the western and eastern plateau exhibits a complex stress field that can be related to the boundary of east/west oriented middle‐to‐lower crustal flow in the main volcanic arc. Southeast of the plateau in the Sierras Pampeanas, crustal seismicity deepens and is dominated by conjugate reverse faulting structures associated with the direction of plate convergence. Vp and Vs seismic velocity models of the upper crust obtained through local earthquake tomography with the improved seismic catalog show low‐velocity anomalies near intermontane basins, except in the Antofagasta basin where a high‐velocity anomaly possibly represents shallow intrusive component of Quaternary basaltic volcanism. Below the Cerro Galan caldera, an upper crustal 10‐day long earthquake swarm is observed which may indicate local stress perturbations from fluids at the top of the crustal magmatic system that feeds this volcano. 
    more » « less