skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing the dynamics of the highly similar May 2016 and June 2019 Iliamna Volcano (Alaska) ice–rock avalanches from seismoacoustic data
Abstract. Surficial mass wasting events are a hazard worldwide. Seismic and acoustic signals from these often remote processes, combined with other geophysical observations, can provide key information for monitoring and rapid response efforts and enhance our understanding of event dynamics. Here, we present seismoacoustic data and analyses for two very large ice–rock avalanches occurring on Iliamna Volcano, Alaska (USA), on 22 May 2016 and 21 June 2019. Iliamna is a glacier-mantled stratovolcano located in the Cook Inlet, ∼200 km from Anchorage, Alaska. The volcano experiences massive, quasi-annual slope failures due to glacial instabilities and hydrothermal alteration of volcanic rocks near its summit. The May 2016 and June 2019 avalanches were particularly large and generated energetic seismic and infrasound signals which were recorded at numerous stations at ranges from ∼9 to over 600 km. Both avalanches initiated in the same location near the head of Iliamna's east-facing Red Glacier, and their ∼8 km long runout shapes are nearly identical. This repeatability – which is rare for large and rapid mass movements – provides an excellent opportunity for comparison and validation of seismoacoustic source characteristics. For both events, we invert long-period (15–80 s) seismic signals to obtain a force-time representation of the source. We model the avalanche as a sliding block which exerts a spatially static point force on the Earth. We use this force-time function to derive constraints on avalanche acceleration, velocity, and directionality, which are compatible with satellite imagery and observed terrain features. Our inversion results suggest that the avalanches reached speeds exceeding 70 m s−1, consistent with numerical modeling from previous Iliamna studies. We lack sufficient local infrasound data to test an acoustic source model for these processes. However, the acoustic data suggest that infrasound from these avalanches is produced after the mass movement regime transitions from cohesive block-type failure to granular and turbulent flow – little to no infrasound is generated by the initial failure. At Iliamna, synthesis of advanced numerical flow models and more detailed ground observations combined with increased geophysical station coverage could yield significant gains in our understanding of these events.  more » « less
Award ID(s):
1614855 1847736
PAR ID:
10232221
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
9
Issue:
2
ISSN:
2196-632X
Page Range / eLocation ID:
271 to 293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Volcanic tremor is a semi‐continuous seismic and/or acoustic signal that occurs at time scales ranging from seconds to years, with variable amplitudes and spectral features. Tremor sources have often been related to fluid movement and degassing processes, and are recognized as a potential geophysical precursor and co‐eruptive geophysical signal. Eruption forecasting and monitoring efforts need a fast, robust method to automatically detect, characterize, and catalog volcanic tremor. Here we develop VOlcano Infrasound and Seismic Spectrogram Network (VOISS‐Net), a pair of convolutional neural networks (one for seismic, one for acoustic) that can detect tremor in near real‐time and classify it according to its spectral signature. Specifically, we construct an extensive data set of labeled seismic and low‐frequency acoustic (infrasound) spectrograms from the 2021–2022 eruption of Pavlof Volcano, Alaska, and use it to train VOISS‐Net to differentiate between different tremor types, explosions, earthquakes and noise. We use VOISS‐Net to classify continuous data from past Pavlof Volcano eruptions (2007, 2013, 2014, 2016, and 2021–2022). VOISS‐Net achieves an 81.2% and 90.0% accuracy on the seismic and infrasound test sets respectively, and successfully characterizes tremor sequences for each eruption. By comparing the derived seismoacoustic timelines of each eruption with the corresponding eruption chronologies compiled by the Alaska Volcano Observatory, our model identifies changes in tremor regimes that coincide with observed volcanic activity. VOISS‐Net can aid tremor‐related monitoring and research by making consistent tremor catalogs more accessible. 
    more » « less
  2. Abstract We present the transverse coherence minimization method (TCM)—an approach to estimate the back-azimuth of infrasound signals that are recorded on an infrasound microphone and a colocated three-component seismometer. Accurate back-azimuth information is important for a variety of monitoring efforts, but it is currently only available for infrasound arrays and for seismoacoustic sensor pairs separated by 10 s of meters. Our TCM method allows for the analysis of colocated sensor pairs, sensors located within a few meters of each other, which may extend the capabilities of existing seismoacoustic networks and supplement operating infrasound arrays. This approach minimizes the coherence of the transverse component of seismic displacement with the infrasound wave to estimate the infrasound back-azimuth. After developing an analytical model, we investigate seismoacoustic signals from the August 2012 Humming Roadrunner experiment and the 26 May 2021 eruption of Great Sitkin Volcano, Alaska, U.S.A., at the ranges of 6.5–185 km from the source. We discuss back-azimuth estimates and potential sources of deviation (1°–15°), such as local terrain effects or deviation from common analytical models. This practical method complements existing seismoacoustic tools and may be suitable for routine application to signals of interest. 
    more » « less
  3. Abstract Since the 1919 foundation of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), the fields of volcano seismology and acoustics have seen dramatic advances in instrumentation and techniques, and have undergone paradigm shifts in the understanding of volcanic seismo-acoustic source processes and internal volcanic structure. Some early twentieth-century volcanological studies gave equal emphasis to barograph (infrasound and acoustic-gravity wave) and seismograph observations, but volcano seismology rapidly outpaced volcano acoustics and became the standard geophysical volcano-monitoring tool. Permanent seismic networks were established on volcanoes (for example) in Japan, the Philippines, Russia, and Hawai‘i by the 1950s, and in Alaska by the 1970s. Large eruptions with societal consequences generally catalyzed the implementation of new seismic instrumentation and led to operationalization of research methodologies. Seismic data now form the backbone of most local ground-based volcano monitoring networks worldwide and play a critical role in understanding how volcanoes work. The computer revolution enabled increasingly sophisticated data processing and source modeling, and facilitated the transition to continuous digital waveform recording by about the 1990s. In the 1970s and 1980s, quantitative models emerged for long-period (LP) event and tremor sources in fluid-driven cracks and conduits. Beginning in the 1970s, early models for volcano-tectonic (VT) earthquake swarms invoking crack tip stresses expanded to involve stress transfer into the wall rocks of pressurized dikes. The first deployments of broadband seismic instrumentation and infrasound sensors on volcanoes in the 1990s led to discoveries of new signals and phenomena. Rapid advances in infrasound technology; signal processing, analysis, and inversion; and atmospheric propagation modeling have now established the role of regional (15–250 km) and remote (> 250 km) ground-based acoustic systems in volcano monitoring. Long-term records of volcano-seismic unrest through full eruptive cycles are providing insight into magma transport and eruption processes and increasingly sophisticated forecasts. Laboratory and numerical experiments are elucidating seismo-acoustic source processes in volcanic fluid systems, and are observationally constrained by increasingly dense geophysical field deployments taking advantage of low-power, compact broadband, and nodal technologies. In recent years, the fields of volcano geodesy, seismology, and acoustics (both atmospheric infrasound and ocean hydroacoustics) are increasingly merging. Despite vast progress over the past century, major questions remain regarding source processes, patterns of volcano-seismic unrest, internal volcanic structure, and the relationship between seismic unrest and volcanic processes. 
    more » « less
  4. ABSTRACT Earthquakes generate infrasound in multiple ways. Acoustic coupling at the surface from vertical seismic velocity, termed local infrasound, is often recorded by infrasound sensors but has seen relatively little study. Over 140 infrasound stations have recently been deployed in Alaska. Most of these stations have single sensors, rather than arrays, and were originally installed as part of the EarthScope Transportable Array. The single sensor nature, paucity of ground-truth signals, and remoteness makes evaluating their data quality and utility challenging. In addition, despite notable recent advances, infrasound calibration and frequency response evaluation remains challenging, particularly for large networks and retrospective analysis of sensors already installed. Here, we examine local seismoacoustic coupling on colocated seismic and infrasound stations in Alaska. Numerous large earthquakes across the region in recent years generated considerable vertical seismic velocity and local infrasound that were recorded on colocated sensors. We build on previous work and evaluate the full infrasound station frequency response using seismoacoustic coupled waves. By employing targeted signal processing techniques, we show that a single seismometer may be sufficient for characterizing the response of an entire nearby infrasound array. We find that good low frequency (<1 Hz) infrasound station response estimates can be derived from large (Mw>7) earthquakes out to at least 1500 km. High infrasound noise levels at some stations and seismic-wave energy focused at low frequencies limit our response estimates. The response of multiple stations in Alaska is found to differ considerably from their metadata and are related to improper installation and erroneous metadata. Our method provides a robust way to remotely examine infrasound station frequency response and examine seismoacoustic coupling, which is being increasingly used in airborne infrasound observations, earthquake magnitude estimation, and other applications. 
    more » « less
  5. Abstract Popocatépetl is a highly active stratovolcano in central Mexico with recurrent activity of Vulcanian-type explosions and frequent degassing. The proximity of Popocatépetl volcano to Mexico City, one of the most populated cities in the world, demands continuous monitoring to achieve an adequate volcano risk assessment. We present an overview of the first high-dynamic-range and high-broadband (0.01–200 Hz; 400 Hz sampling rate) seismoacoustic network (PoPiNet), which we operated around Popocatépetl volcano from August 2021 to May 2022. Here, we show preliminary results of the explosions recorded in September 2021. We deployed five seismoacoustic stations within 4–25 km horizontal distance (range) from the vent. We identify infrasonic waveforms associated with tremor and explosions, with pressures ranging from 16 to 134 Pa and dominant frequencies between 0.2 and 5.0 Hz. The frequency content of the recorded signals at the closest stations to the volcano spans the sub-bass (20–60 Hz) and bass (60–250 Hz) ranges. The associated seismic signals of moderate explosions exhibit air-to-ground coupled waves with maximum coherence values at frequencies up to 5 and 25 Hz for the farthest and closest stations to the volcano, respectively. Conversely, we observe infrasound signal amplitudes from relatively small explosions reaching maximum pressures of 10 Pa that do not couple into the ground, even at the closest stations. These infrasound signals are associated with type-I long-period events as reported in previous investigations. The waveform consistency suggests repetitive and nondestructive sources beneath the volcano. 
    more » « less