Nervous systems sense, communicate, compute, and actuate movement, using distributed hardware with tradeoffs in speed and accuracy. The resulting sensorimotor control is nevertheless remarkably fast and accurate due to highly effective layered architectures. However, such architectures have received little attention in neuroscience due to the lack of theory that connects the system and hardware level speed-accuracy tradeoffs. In this paper, we present a theoretical framework that connects the speed-accuracy tradeoffs of sensorimotor control and neurophysiology. We characterize how the component SATs in spiking neuron communication and their sensory and muscle endpoints constrain the system SATs in both stochastic and deterministic models. The results show that appropriate speed -accuracy diversity at the neurons/muscles levels allow nervous systems to improve the speed and accuracy in control performance despite using slow or inaccurate hardware. Then, we characterize the fundamental limits of layered control systems and show that appropriate diversity in planning and reaction layers leads to both fast and accurate system despite being composed of slow or inaccurate layers. We term these phenomena “Diversity Sweet Spots.” The theory presented here is illustrated in a companion paper, which introduces simple demos and a new inexpensive and easy-to-use experimental platform.
more »
« less
Diversity-enabled sweet spots in layered architectures and speed–accuracy trade-offs in sensorimotor control
Significance Nervous systems use highly effective layered architectures in the sensorimotor control system to minimize the harmful effects of delay and inaccuracy in biological components. To study what makes effective architectures, we develop a theoretical framework that connects the component speed–accuracy trade-offs (SATs) with system SATs and characterizes the system performance of a layered control system. We show that diversity in layers (e.g., planning and reflex) allows fast and accurate sensorimotor control, even when each layer uses slow or inaccurate components. We term such phenomena “diversity-enabled sweet spots (DESSs).” DESSs explain and link the extreme heterogeneities in axon sizes and numbers and the resulting robust performance in sensorimotor control.
more »
« less
- Award ID(s):
- 1735004
- PAR ID:
- 10232235
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 22
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes several surprisingly rich but simple demos and a new experimental platform for human sensorimotor control research and also controls education. The platform safely simulates a canonical sensorimotor task of riding a mountain bike down a steep, twisting, bumpy trail using a standard display and inexpensive off-the-shelf gaming steering wheel with a force feedback motor. We use the platform to verify our theory, presented in a companion paper. The theory tells how component hardware speed-accuracy tradeoffs (SATs) in control loops impose corresponding SATs at the system level and how effective architectures mitigate the deleterious impact of hardware SATs through layering and “diversity sweet spots” (DSSs). Specifically, we measure the impacts on system performance of delays, quantization, and uncertainties in sensorimotor control loops, both within the subject's nervous system and added externally via software in the platform. This provides a remarkably rich test of the theory, which is consistent with all preliminary data. Moreover, as the theory predicted, subjects effectively multiplex specific higher layer planning/tracking of the trail using vision with lower layer rejection of unseen bump disturbances using reflexes. In contrast, humans multitask badly on tasks that do not naturally distribute across layers (e.g. texting and driving). The platform is cheap to build and easy to program for both research and education purposes, yet verifies our theory, which is aimed at closing a crucial gap between neurophysiology and sensorimotor control. The platform can be downloaded at https://github.com/Doyle-Lab/WheelCon.more » « less
-
This paper concerns modeling, simulations and control design of turbo-electric distributed propulsion (TeDP) systems needed to power future hybrid aircraft systems. The approach taken is the one of control co-design by which the sizing and hardware selection of components and the TeDP architecture design are pursued so that potential e ects of control and automation are accounted for from the very beginning. Unique to this approach is a multi-layered modular modeling and control approach in which technology-specific modules comprising the complex dynamical system are characterized using unified interaction variables at their interfaces with the rest of the system. The dynamical performance of the interconnected system is assessed using these technology-agnostic interface variable specifications and, as such, can be applied to any candidate architecture of interest. Importantly, even the inputs to the TeDP system coming from pilot commands are modeled using such interface variables. This new multi-layered modeling captures the dynamics of energy and power as interactions. It also has a rather straightforward physical interpretation. The paper builds on our earlier results introduced for terrestrial power systems, including small micro-grids. We show how system feasibility and stability can be checked in real-time operations by modules exchanging the information about their interaction variables and adjusting in a near-autonomous manner so that, as system conditions vary, the interconnected system still functions. No such systematic control co-design exists to the best of our knowledge, but it is needed as both new technologies and more complex, often conflicting performance objectives emerge. We illustrate the approach on a representative TeDP architecture and compare it to today’s state-of-the-art. We close with a discussion on the generalization of the method for any given candidate architecture. Having such an approach dramatically reduces the R&D&D of novel candidate architectures.more » « less
-
ABSTRACT Recycled glass offers a promising, cost-effective alternative to silica sand for water filtration. This study evaluated its performance in a gravity-driven flow system using three particle sizes: gravel (G), coarse sand (CS), and fine sand (FS). As expected, a tradeoff was observed between turbidity reduction and permeability. FS achieved the greatest turbidity reduction (96.6% in particulate filtration and 93.1% in environmental water filtration) and Escherichia coli log removal of 1 ± 0.2, but low permeability. Higher permeability but poor turbidity and E. coli removal was achieved using G. To balance these tradeoffs, a layered filtration system was used to improve permeability with effective turbidity reduction (96.9% in particulate filtration and 93.5% in environmental water filtration). Without coagulant treatment, the E. coli log removal was 0.27 ± 0.15; with coagulant pre-treatment, it increased to 2.5 ± 0.4 for the layered filtration system. These findings demonstrate that crushed recycled glass can be used as an effective filtration medium and the filtration system can be configured with different particle sizes and/or layers to meet application-specific requirements.more » « less
-
Biological materials such as seashell nacre exhibit extreme mechanical properties due to their multilayered microstructures. Collaborative interaction among these layers achieves performance beyond the capacity of a single layer. Inspired by these multilayer biological systems, we architect materials with free-form layered microstructures to program multistage snap-buckling and plateau responses—accomplishments challenging with single-layer materials. The developed inverse design paradigm simultaneously optimizes local microstructures within layers and their interconnections, enabling intricate layer interactions. Each layer plays a synergistic role in collectively achieving high-precision control over the desired extreme nonlinear responses. Through high-fidelity simulations, hybrid fabrication, and tailored experiments, we demonstrate complex responses fundamental to various functionalities, including energy dissipation and wearable devices. We orchestrate multisnapping phenomena from complex interactions between heterogeneous local architectures to encode and store information within architected materials, unlocking data encryption possibilities. These layered architected materials offer transformative advancements across diverse fields, including vibration control, wearables, and information encryption.more » « less
An official website of the United States government
