skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental and educational platforms for studying architecture and tradeoffs in human sensorimotor control
This paper describes several surprisingly rich but simple demos and a new experimental platform for human sensorimotor control research and also controls education. The platform safely simulates a canonical sensorimotor task of riding a mountain bike down a steep, twisting, bumpy trail using a standard display and inexpensive off-the-shelf gaming steering wheel with a force feedback motor. We use the platform to verify our theory, presented in a companion paper. The theory tells how component hardware speed-accuracy tradeoffs (SATs) in control loops impose corresponding SATs at the system level and how effective architectures mitigate the deleterious impact of hardware SATs through layering and “diversity sweet spots” (DSSs). Specifically, we measure the impacts on system performance of delays, quantization, and uncertainties in sensorimotor control loops, both within the subject's nervous system and added externally via software in the platform. This provides a remarkably rich test of the theory, which is consistent with all preliminary data. Moreover, as the theory predicted, subjects effectively multiplex specific higher layer planning/tracking of the trail using vision with lower layer rejection of unseen bump disturbances using reflexes. In contrast, humans multitask badly on tasks that do not naturally distribute across layers (e.g. texting and driving). The platform is cheap to build and easy to program for both research and education purposes, yet verifies our theory, which is aimed at closing a crucial gap between neurophysiology and sensorimotor control. The platform can be downloaded at https://github.com/Doyle-Lab/WheelCon.  more » « less
Award ID(s):
1735003
PAR ID:
10155677
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2019 American Control Conference
Page Range / eLocation ID:
483 to 488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nervous systems sense, communicate, compute, and actuate movement, using distributed hardware with tradeoffs in speed and accuracy. The resulting sensorimotor control is nevertheless remarkably fast and accurate due to highly effective layered architectures. However, such architectures have received little attention in neuroscience due to the lack of theory that connects the system and hardware level speed-accuracy tradeoffs. In this paper, we present a theoretical framework that connects the speed-accuracy tradeoffs of sensorimotor control and neurophysiology. We characterize how the component SATs in spiking neuron communication and their sensory and muscle endpoints constrain the system SATs in both stochastic and deterministic models. The results show that appropriate speed -accuracy diversity at the neurons/muscles levels allow nervous systems to improve the speed and accuracy in control performance despite using slow or inaccurate hardware. Then, we characterize the fundamental limits of layered control systems and show that appropriate diversity in planning and reaction layers leads to both fast and accurate system despite being composed of slow or inaccurate layers. We term these phenomena “Diversity Sweet Spots.” The theory presented here is illustrated in a companion paper, which introduces simple demos and a new inexpensive and easy-to-use experimental platform. 
    more » « less
  2. Significance Nervous systems use highly effective layered architectures in the sensorimotor control system to minimize the harmful effects of delay and inaccuracy in biological components. To study what makes effective architectures, we develop a theoretical framework that connects the component speed–accuracy trade-offs (SATs) with system SATs and characterizes the system performance of a layered control system. We show that diversity in layers (e.g., planning and reflex) allows fast and accurate sensorimotor control, even when each layer uses slow or inaccurate components. We term such phenomena “diversity-enabled sweet spots (DESSs).” DESSs explain and link the extreme heterogeneities in axon sizes and numbers and the resulting robust performance in sensorimotor control. 
    more » « less
  3. Sighted players gain spatial awareness within video games through sight and spatial awareness tools (SATs) such as minimaps. Visually impaired players (VIPs), however, must often rely heavily on SATs to gain spatial awareness, especially in complex environments where using rich ambient sound design alone may be insufficient. Researchers have developed many SATs for facilitating spatial awareness within VIPs. Yet this abundance disguises a gap in our understanding about how exactly these approaches assist VIPs in gaining spatial awareness and what their relative merits and limitations are. To address this, we investigate four leading approaches to facilitating spatial awareness for VIPs within a 3D video game context. Our findings uncover new insights into SATs for VIPs within video games, including that VIPs value position and orientation information the most from an SAT; that none of the approaches we investigated convey position and orientation effectively; and that VIPs highly value the ability to customize SATs. 
    more » « less
  4. Abstract Wireless communication devices must be protected from malicious threats, including active jamming attacks, due to the widespread use of wireless systems throughout our every‐day lives. Jamming mitigation techniques are predominately evaluated through simulation or with hardware for very specific jamming conditions. In this paper, an experimental software defined radio‐based RF jamming mitigation platform which performs online jammer classification and leverages reconfigurable beam‐steering antennas at the physical layer is introduced. A ray‐tracing emulation system is presented and validated to enable hardware‐in‐the‐loop jamming experiments of complex outdoor and mobile site‐specific scenarios. Random forests classifiers are trained based on over‐the‐air collected data and integrated into the platform. The mitigation system is evaluated for both over‐the‐air and ray‐tracing emulated environments. The experimental results highlight the benefit of using the jamming mitigation system in the presence of active jamming attacks. 
    more » « less
  5. The Survey of Attitudes Toward Statistics (SATS) is a widely used family of instruments for measuring attitude constructs in statistics education. Since the development of the SATS instruments, there has been an evolution in the understanding of validity in the field of educational measurement emphasizing validation as an on-going process. While a 2012 review of statistics education attitude instruments noted that the SATS family had the most validity evidence, two types of challenges to the use of these instruments have emerged: challenges to the interpretations of scale scores and challenges using the SATS instruments in populations other than undergraduate students enrolled in introductory statistics courses. A synthesis of the literature and empirical results are used to document these challenges. 
    more » « less