skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From foraging trails to transport networks: how the quality-distance trade-off shapes network structure
Biological systems are typically dependent on transportation networks for the efficient distribution of resources and information. Revealing the decentralized mechanisms underlying the generative process of these networks is key in our global understanding of their functions and is of interest to design, manage and improve human transport systems. Ants are a particularly interesting taxon to address these issues because some species build multi-sink multi-source transport networks analogous to human ones. Here, by combining empirical field data and modelling at several scales of description, we show that pre-existing mechanisms of recruitment with positive feedback involved in foraging can account for the structure of complex ant transport networks. Specifically, we find that emergent group-level properties of these empirical networks, such as robustness, efficiency and cost, can arise from models built on simple individual-level behaviour addressing a quality-distance trade-off by the means of pheromone trails. Our work represents a first step in developing a theory for the generation of effective multi-source multi-sink transport networks based on combining exploration and positive reinforcement of best sources.  more » « less
Award ID(s):
1755406 1755425
PAR ID:
10232292
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1949
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic transportation networks are embedded in all levels of biological organization. Ever-growing anthropogenic disturbances and an increasingly variable climate highlight the importance of understanding how these networks restructure under environmental perturbations. Polydomous wood ants provide a convenient model system to study the resilience of self-organizing multi-source, multi-sink transportation networks. We used 10 years of longitudinal empirical data on both unperturbed and experimentally manipulated colony networks to develop and validate a comprehensive dynamic simulation model to study network restructuring after resource removal. We performed simulation experiments to study the effects of excluding food sources with varying importance, either temporarily or permanently, imitating pulse and press perturbations of the networks. We found that removing heavily used resources, corresponding to a strong targeted perturbation, persistently decreased network efficiency, unlike random or weak perturbations. We also found that strong perturbations had excessively adverse effects on robustness and function, reducing the networks’ ability to withstand potential future perturbations. When transportation networks develop around the efficient use of a few key resources, they may be unable to quickly recover from the loss of these through self-organized restructuring. Our findings highlight the importance of considering the interaction of perturbation strength and network structure in studying transportation network dynamics. 
    more » « less
  2. We study counting problems for several types of orientations of chordal graphs: source-sink-free orientations, sink-free orientations, acyclic orientations, and bipolar orientations, and, for the latter two, we also present linear-time uniform samplers. Counting sink-free, acyclic, or bipolar orientations are known to be #P-complete for general graphs, motivating our study on a restricted, yet well-studied, graph class. Our main focus is source-sink-free orientations, a natural restricted version of sink-free orientations related to strong orientations, which we introduce in this work. These orientations are intriguing, since despite their similarity, currently known FPRAS and sampling techniques (such as Markov chains or sink-popping) that apply to sink-free orientations do not seem to apply to source-sink-free orientations. We present fast polynomialtime algorithms counting these orientations on chordal graphs. Our approach combines dynamic programming with inclusion-exclusion (going two levels deep for source-sink-free orientations and one level for sinkfree orientations) throughout the computation. Dynamic programming counting algorithms can be typically used to produce a uniformly random sample. However, due to the negative terms of the inclusion-exclusion, the typical approach to obtain a polynomial-time sampling algorithm does not apply in our case. Obtaining such an almost uniform sampling algorithm for source-sink-free orientations in chordal graphs remains an open problem. Little is known about counting or sampling of acyclic or bipolar orientations, even on restricted graph classes. We design efficient (linear-time) exact uniform sampling algorithms for these orientations on chordal graphs. These algorithms are a byproduct of our counting algorithms, but unlike in other works that provide dynamic-programming-based samplers, we produce a random orientation without computing the corresponding count, which leads to a faster running time than the counting algorithm (since it avoids manipulation of large integers). 
    more » « less
  3. Ryan, Michael (Ed.)
    Abstract Increasing evidence suggests that tree growth is sink-limited by environmental and internal controls rather than by carbon availability. However, the mechanisms underlying sink-limitations are not fully understood and thus not represented in large-scale vegetation models. We develop a simple, analytically solved, mechanistic, turgor-driven growth model (TDGM) and a phloem transport model (PTM) to explore the mechanics of phloem transport and evaluate three hypotheses. First, phloem transport must be explicitly considered to accurately predict turgor distributions and thus growth. Second, turgor-limitations can explain growth-scaling with size (metabolic scaling). Third, turgor can explain realistic growth rates and increments. We show that mechanistic, sink-limited growth schemes based on plant turgor limitations are feasible for large-scale model implementations with minimal computational demands. Our PTM predicted nearly uniform sugar concentrations along the phloem transport path regardless of phloem conductance, stem water potential gradients and the strength of sink-demands contrary to our first hypothesis, suggesting that phloem transport is not limited generally by phloem transport capacity per se but rather by carbon demand for growth and respiration. These results enabled TDGM implementation without explicit coupling to the PTM, further simplifying computation. We test the TDGM by comparing predictions of whole-tree growth rate to well-established observations (site indices) and allometric theory. Our simple TDGM predicts realistic tree heights, growth rates and metabolic scaling over decadal to centurial timescales, suggesting that tree growth is generally sink and turgor limited. Like observed trees, our TDGM captures tree-size- and resource-based deviations from the classical ¾ power-law metabolic scaling for which turgor is responsible. 
    more » « less
  4. Dovrolis, Constantine (Ed.)
    A preemptive multi-hop contact tracing scheme that tracks not only the direct contacts of those who tested positive for COVID-19, but also secondary or tertiary contacts has been proposed and deployed in practice with some success. We propose a mathematical methodology for evaluating this preemptive contact tracing strategy that combines the contact tracing dynamics and the virus transmission mechanism in a single framework using microscopic Markov Chain approach (MMCA). We perform Monte Carlo (MC) simulations to validate our model and show that the output of our model provides a reasonable match with the result of MC simulations. Utilizing the formulation under a human contact network generated from real-world data, we show that the cost-benefit tradeoff can be significantly enhanced through an implementation of the multi-hop contact tracing as compared to traditional contact tracing. We further shed light on the mechanisms behind the effectiveness of the multi-hop testing strategy using the framework. We show that our mathematical framework allows significantly faster computation of key attributes for multi-hop contact tracing as compared to MC simulations. This in turn enables the investigation of these attributes for large contact networks, and constitutes a significant strength of our approach as the contact networks that arise in practice are typically large. 
    more » « less
  5. Summary The potential for widespread sink‐limited plant growth has received increasing attention in the literature in the past few years. Despite recent evidence for sink limitations to plant growth, there are reasons to be cautious about a sink‐limited world view. First, source‐limited vegetation models do a reasonable job at capturing geographic patterns in plant productivity and responses to resource limitations. Second, from an evolutionary perspective, it is nonadaptive for plants to invest in increasing carbon assimilation if growth is primarily sink‐limited. In this review, we synthesize the potential evidence for and underlying physiology of sink limitation across terrestrial ecosystems and contrast mechanisms of sink limitation with those of source‐limited productivity. We highlight evolutionary restrictions on the magnitude of sink limitation at the organismal level. We also detail where mechanisms regulating sink limitation at the organismal and ecosystem scale (e.g. the terrestrial carbon sink) diverge. Although we find that there is currently no direct evidence for widespread organismal sink limitation, we propose a series of follow‐up growth chamber manipulations, systematized measurements, and modeling experiments targeted at diagnosing nonadaptive buildup of excess nonstructural carbohydrates that will help illuminate the prevalence and magnitude of organismal sink limitation. 
    more » « less