Abstract In studying resilience in temporal human networks, relying solely on global network measures would be inadequate; latent sub-structural network mechanisms need to be examined to determine the extent of impact and recovery of these networks during perturbations, such as urban flooding. In this study, we utilize high-resolution aggregated location-based data to construct temporal human mobility networks in Houston in the context of the 2017 Hurricane Harvey. We examine motif distribution, motif persistence, temporal stability, and motif attributes to reveal latent sub-structural mechanisms related to the resilience of human mobility networks during disaster-induced perturbations. The results show that urban flood impacts persist in human mobility networks at the sub-structure level for several weeks. The impact extent and recovery duration are heterogeneous across different network types. Also, while perturbation impacts persist at the sub-structure level, global topological network properties indicate that the network has recovered. The findings highlight the importance of examining the microstructures and their dynamic processes and attributes in understanding the resilience of temporal human mobility networks (and other temporal networks). The findings can also provide disaster managers, public officials, and transportation planners with insights to better evaluate impacts and monitor recovery in affected communities.
more »
« less
This content will become publicly available on April 1, 2026
Strong and weak environmental perturbations cause contrasting restructure of ant transportation networks
Dynamic transportation networks are embedded in all levels of biological organization. Ever-growing anthropogenic disturbances and an increasingly variable climate highlight the importance of understanding how these networks restructure under environmental perturbations. Polydomous wood ants provide a convenient model system to study the resilience of self-organizing multi-source, multi-sink transportation networks. We used 10 years of longitudinal empirical data on both unperturbed and experimentally manipulated colony networks to develop and validate a comprehensive dynamic simulation model to study network restructuring after resource removal. We performed simulation experiments to study the effects of excluding food sources with varying importance, either temporarily or permanently, imitating pulse and press perturbations of the networks. We found that removing heavily used resources, corresponding to a strong targeted perturbation, persistently decreased network efficiency, unlike random or weak perturbations. We also found that strong perturbations had excessively adverse effects on robustness and function, reducing the networks’ ability to withstand potential future perturbations. When transportation networks develop around the efficient use of a few key resources, they may be unable to quickly recover from the loss of these through self-organized restructuring. Our findings highlight the importance of considering the interaction of perturbation strength and network structure in studying transportation network dynamics.
more »
« less
- Award ID(s):
- 1755425
- PAR ID:
- 10640704
- Publisher / Repository:
- Royal Society Publishing
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 292
- Issue:
- 2044
- ISSN:
- 1471-2954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Technical advances in artificial manipulation of neural activity have precipitated a surge in studying the causal contribution of brain circuits to cognition and behavior. However, complexities of neural circuits challenge interpretation of experimental results, necessitating new theoretical frameworks for reasoning about causal effects. Here, we take a step in this direction, through the lens of recurrent neural networks trained to perform perceptual decisions. We show that understanding the dynamical system structure that underlies network solutions provides a precise account for the magnitude of behavioral effects due to perturbations. Our framework explains past empirical observations by clarifying the most sensitive features of behavior, and how complex circuits compensate and adapt to perturbations. In the process, we also identify strategies that can improve the interpretability of inactivation experiments. Significance StatementNeuroscientists heavily rely on artificial perturbation of the neural activity to understand the function of brain circuits. Current interpretations of experimental results often follow a simple logic, that the magnitude of a behavioral effect following a perturbation indicates the degree of involvement of the perturbed circuit in the behavior. We model a variety of neural networks with controlled levels of complexity, robustness, and plasticity, showing that perturbation experiments could yield counter-intuitive results when networks are complex enough-to allow unperturbed pathways to compensate for the perturbed neurons-or plastic enough-to allow continued learning from feedback during perturbations. To rein in these complexities we develop a Functional Integrity Index that captures alterations in network computations and predicts disruptions of behavior with the perturbation.more » « less
-
The confluence of advanced networking (5G/6G) and distributed cloud technologies (edge/fog computing) are rapidly transforming next-generation networks into highly distributed computation platforms, especially suited to host emerging resource-intensive and latency-sensitive services (e.g., smart transportation/city/factory, real-time computer vision, augmented reality). In this paper, we leverage the recently proposed Cloud Network Flow (CNF) modeling and optimization framework to design a novel two-timescale orchestration system for the joint control of communication and computation resources in cloud-integrated networks. The Long-Term Controller solves a properly constructed CNF optimization problem at a longer timescale that determines i) the end-to-end CNF routes (defining data paths and processing locations) for each service chain and ii) the associated allocation of communication and computation resources. The Short-Term Controller uses a local control policy to adjust the allocation of communication and computation resources based on queue state observations at a shorter timescale. Driven by the lack of proper simulation tools, we also develop new ns-3 features that allow modeling and simulation of cloud-integrated networks equipped with both communication and computation resources hosting arbitrary service chains. Finally, we integrate the proposed orchestration system into ns-3 to evaluate and analyze the dynamic orchestration of a set of representative service chains over a hierarchical cloud-integrated network.more » « less
-
Colloids that attractively bond to only a few neighbors (e.g., patchy particles) can form equilibrium gels with distinctive dynamic properties that are stable in time. Here, we use a coarse-grained model to explore the dynamics of linked networks of patchy colloids whose average valence is macroscopically, rather than microscopically, constrained. Simulation results for the model show dynamic hallmarks of equilibrium gel formation and establish that the colloid–colloid bond persistence time controls the characteristic slow relaxation of the self-intermediate scattering function. The model features re-entrant network formation without phase separation as a function of linker concentration, centered at the stoichiometric ratio of linker ends to nanoparticle surface bonding sites. Departures from stoichiometry result in linker-starved or linker-saturated networks with reduced connectivity and shorter characteristic relaxation times with lower activation energies. Underlying the re-entrant trends, dynamic properties vary monotonically with the number of effective network bonds per colloid, a quantity that can be predicted using Wertheim’s thermodynamic perturbation theory. These behaviors suggest macroscopic in situ strategies for tuning the dynamic response of colloidal networks.more » « less
-
Modern manufacturing is increasingly challenged by larger product varieties, shorter product life cycles, and unexpected production disruptions. Examples of such disruptions include market uncertainty, machine failures, and delivery backlogs. These disturbances are intricately interrelated, exacerbating system complexity and necessitating the adaptive organization (or re-configuration) of machine networks within factory layouts. However, traditional factory layouts are often stationary and lack the flexibility to rearrange or adjust machine networks in response to volatile markets and unexpected disruptions. Also, layout planning typically emphasizes offline design and configuration of machine networks and resources within a facility to optimize process flow and production performance, but tends to overlook the self-organizing arrangement of machines in a dynamic environment. Therefore, to address this gap, this paper presents a novel Self-organizing Machine Network (SOMN) model that optimizes the spatial layout of machine positions and queue configurations, thereby enhancing the manufacturing system’s resilience to unexpected disruptions. First, as opposed to traditional fixed machine positions, we design intelligent machine agents that communicate and autonomously reorganize in real-time to optimize key performance indicators (KPIs). Second, we develop the machine network model in a Digital Twin (DT) environment, facilitating cyber-physical interactions and capturing variations of state-action space in machine agents. Third, multi-agent reinforcement learning (MARL) algorithms empower these networked machine agents to adapt layouts and minimize the impact of disruptions on production performance. We evaluate and validate the proposed SOMN model through computer experiments, benchmarking it against random search and simulated annealing approaches. Experimental results show that the SOMN model significantly improves material handling efficiency, reduces computational overhead, and maintains productivity in different scenarios of manufacturing disruptions. This research holds strong potential for enabling distributed intelligence within self-organizing machine networks for resilient manufacturing.more » « less
An official website of the United States government
