Mental distress during the COVID-19 pandemic among US adults without a pre-existing mental health condition: Findings from American trend panel survey
- Award ID(s):
- 2028683
- PAR ID:
- 10232403
- Date Published:
- Journal Name:
- Preventive Medicine
- Volume:
- 139
- Issue:
- C
- ISSN:
- 0091-7435
- Page Range / eLocation ID:
- 106231
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present a comprehensive evaluation of multiple LLMs on various mental health prediction tasks via online text data, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research.more » « less
-
Abstract Mental fatigue is an important aspect of alertness and wellbeing. Existing fatigue tests are subjective and/or time-consuming. Here, we show that smartphone-based gaze is significantly impaired with mental fatigue, and tracks the onset and progression of fatigue. A simple model predicts mental fatigue reliably using just a few minutes of gaze data. These results suggest that smartphone-based gaze could provide a scalable, digital biomarker of mental fatigue.more » « less
-
Abstract Gilead et al.'s approach to human cognition places abstraction and prediction at the heart of “mental travel” under a “representational diversity” perspective that embraces foundational concepts in cognitive science. But, it gives insufficient credit to the possibility that the process of abstraction produces a gradient, and underestimates the importance of a highly influential domain in predictive cognition: language, and related, the emergence of experientially based structure through time.more » « less
An official website of the United States government

