skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mental distress during the COVID-19 pandemic among US adults without a pre-existing mental health condition: Findings from American trend panel survey
Award ID(s):
2028683
PAR ID:
10232403
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Preventive Medicine
Volume:
139
Issue:
C
ISSN:
0091-7435
Page Range / eLocation ID:
106231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present a comprehensive evaluation of multiple LLMs on various mental health prediction tasks via online text data, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research. 
    more » « less
  2. Abstract Mental fatigue is an important aspect of alertness and wellbeing. Existing fatigue tests are subjective and/or time-consuming. Here, we show that smartphone-based gaze is significantly impaired with mental fatigue, and tracks the onset and progression of fatigue. A simple model predicts mental fatigue reliably using just a few minutes of gaze data. These results suggest that smartphone-based gaze could provide a scalable, digital biomarker of mental fatigue. 
    more » « less
  3. Abstract Gilead et al.'s approach to human cognition places abstraction and prediction at the heart of “mental travel” under a “representational diversity” perspective that embraces foundational concepts in cognitive science. But, it gives insufficient credit to the possibility that the process of abstraction produces a gradient, and underestimates the importance of a highly influential domain in predictive cognition: language, and related, the emergence of experientially based structure through time. 
    more » « less