ABSTRACT Plasma serotonin (5-hydroxytryptamine, 5-HT) homeostasis is maintained through the combined processes of uptake (via the 5-HT transporter SERT, and others), degradation (via monoamine oxidase, MAO) and excretion. Previous studies have shown that inhibiting SERT, which would inhibit 5-HT uptake and degradation, attenuates parts of the cardiovascular hypoxia reflex in gulf toadfish (Opsanus beta), suggesting that these 5-HT clearance processes may be important during hypoxia exposure. Therefore, the goal of this experiment was to determine the effects of mild hypoxia on 5-HT uptake and degradation in the peripheral tissues of toadfish. We hypothesized that 5-HT uptake and degradation would be upregulated during hypoxia, resulting in lower plasma 5-HT, with uptake occurring in the gill, heart, liver and kidney. Fish were exposed to normoxia (97.6% O2 saturation, 155.6 Torr) or 2 min, 40 min or 24 h mild hypoxia (50% O2 saturation, ∼80 Torr), then injected with radiolabeled [3H]5-HT before blood, urine, bile and tissues were sampled. Plasma 5-HT levels were reduced by 40% after 40 min of hypoxia exposure and persisted through 24 h. 5-HT uptake by the gill was upregulated following 2 min of hypoxia exposure, and degradation in the gill was upregulated at 40 min and 24 h. Interestingly, there was no change in 5-HT uptake by the heart and degradation in the heart decreased by 58% within 2 min of hypoxia exposure and by 85% at 24 h. These results suggest that 5-HT clearance is upregulated during hypoxia and is likely driven, in part, by mechanisms within the gill and not the heart.
more »
« less
The role of uptake and degradation in the regulation of peripheral serotonin dynamics in Gulf toadfish, Opsanus beta
The neurotransmitter serotonin (5-hyroxytryptamine, 5-HT) is involved in a variety of peripheral processes. Arguably most notable is its role as a circulating vasoconstrictor in the plasma of vertebrates. Plasma 5-HT is maintained at constant levels under normal conditions through the processes of cellular uptake, degradation, and excretion, known collectively as clearance. However, the degree to which each individual component of clearance contributes to this whole animal response remains poorly understood. The goal of this experiment was to determine the extent to which transporter-mediated uptake and intracellular degradation contribute to 5-HT clearance in the model teleost Gulf toadfish (Opsanus beta). Fish that were treated with the 5-HT transport inhibitors fluoxetine, buproprion, and decynium-22 had 1.47-fold higher plasma 5-HT concentrations and a 40% decrease in clearance rate compared to control fish. In contrast, fish treated with the MAO inhibitor clorgyline had a 1.54-fold increase in plasma 5-HT with no change in clearance rate. The results show that transporter-mediated 5-HT uptake plays an important role in controlling circulating 5-HT and whole body 5-HT homeostasis.
more »
« less
- Award ID(s):
- 1754550
- PAR ID:
- 10232418
- Date Published:
- Journal Name:
- Comparative biochemistry and physiology
- Volume:
- 258
- ISSN:
- 1095-6433
- Page Range / eLocation ID:
- 110980
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Heparan sulfate (HS) is a sulfated polysaccharide with a wide range of biological activities. There is an increasing interest in the development of structurally homogeneous HS oligosaccharides as therapeutics. However, the factors influencing the pharmacokinetic properties of HS-based therapeutics remain unknown. Here, we report the pharmacokinetic properties of a panel of dodecasaccharides (12-mers) with varying sulfation patterns in healthy mice and uncover the pharmacokinetic properties of an octadecasaccharide (18-mer) in acutely injured mice. In the 12-mer panel, 1 12-mer, known as dekaparin, is anticoagulant, and 3 12-mers are nonanticoagulant. The concentrations of 12-mers in plasma and urine were determined by the disaccharide analysis using liquid chromatography coupled with tandem mass spectrometry. We observed a striking difference between anticoagulant and nonanticoagulant oligosaccharides in the 12-mer panel, showing that anticoagulant dekaparin had a 4.6-fold to 8.6-fold slower clearance and 4.4-fold to 8-fold higher plasma exposure compared to nonanticoagulant 12-mers. We also observed that the clearance of HS oligosaccharides is impacted by disease. Using an antiinflammatory 18-mer, we discovered that the clearance of 18-mer is reduced 2.8-fold in a liver failure mouse model compared to healthy mice. Our results suggest that oligosaccharides are rapidly cleared renally if they have low interaction with circulating proteins. We observed that the clearance rate of oligosaccharides is inversely associated with the degree of binding to target proteins, which can vary in response to pathophysiological conditions. Our findings uncover a contributing factor for the plasma and renal clearance of oligosaccharides which will aid the development of HS-based therapeutics.more » « less
-
It is well established that, during neural circuit development, glutamatergic synapses become strengthened via NMDA receptor (NMDAR)-dependent upregulation of AMPA receptor (AMPAR)-mediated currents. In addition, however, it is known that the neuromodulator serotonin is present throughout most regions of the vertebrate brain while synapses are forming and being shaped by activity-dependent processes. This suggests that serotonin may modulate or contribute to these processes. Here, we investigate the role of serotonin in the developing retinotectal projection of theXenopustadpole. We altered endogenous serotonin transmission in stage 48/49 (∼10–21 days postfertilization)Xenopustadpoles and then carried out a set of whole-cell electrophysiological recordings from tectal neurons to assess retinotectal synaptic transmission. Because tadpole sex is indeterminate at these early stages of development, experimental groups were composed of randomly chosen tadpoles. We found that pharmacologically enhancing and reducing serotonin transmission for 24 h up- and downregulates, respectively, AMPAR-mediated currents at individual retinotectal synapses. Inhibiting 5-HT2receptors also significantly weakened AMPAR-mediated currents and abolished the synapse strengthening effect seen with enhanced serotonin transmission, indicating a 5-HT2receptor–dependent effect. We also determine that the serotonin-dependent upregulation of synaptic AMPAR currents was mediated via an NMDAR-independent, PI3K-dependent mechanism. Altogether, these findings indicate that serotonin regulates AMPAR currents at developing synapses independent of NMDA transmission, which may explain its role as an enabler of activity-dependent plasticity.more » « less
-
null (Ed.)Abstract The onset and exacerbation of obesity involves the overproduction of the adipocyte-derived hormone leptin, a key mediator of homeostatic appetite regulation and a signal for satiety. Although leptin’s hypothalamic regulation of food intake has been extensively investigated, its role in tandem with the anorectic neurotransmitter serotonin (5-HT) has been less characterized. 5-HT is synthesized in the dorsal raphe nucleus (DRN) where anatomical projections to many hypothalamic nuclei have previously been identified. Preliminary studies in our lab have: (1) identified serotonergic neurons responsive to leptin in the DRN that project to the arcuate nucleus (ARC) of the hypothalamus and (2) demonstrated leptin injected into the DRN significantly decreases food intake. The objective of the current study was to identify the role of 5-HT in leptin’s regulation of food intake first within the DRN, then between the DRN and the ARC. Adult male Sprague Dawley rats underwent stereotaxic surgery for guide cannula implantation in the DRN. After recovery, animals were administered 100 µg of p-chlorophenylalanine (PCPA), an inhibitor of 5-HT synthesis, in the DRN each day for four days. On the fourth day, leptin was also administered in the DRN (5 µg/rat) and food intake was measured over a 24-hour time course. ANOVA analysis revealed a significant difference in 24-hour food intake [F (3, 18) = 3.972; P = 0.0246] and post-hoc analysis showed that animals treated with leptin significantly decreased food intake (17.2 ± 2.0 g) compared to control rats (25.4 ± 0.9 g), whereas PCPA-treated rats did not differ from the control rats, suggesting that depletion of 5-HT attenuated leptin’s ability to regulate food intake within the DRN. To examine the role of 5-HT on leptin’s hypothalamic action, a subsequent experiment was conducted by implanting an additional cannula into the ARC for the administration of leptin or vehicle on the fourth day of treatment. ANOVA analysis revealed a significant difference in 24-hour food intake [F (3, 16) = 5.998; P = 0.0061] and post-hoc analysis showed that only rats treated with leptin in the ARC significantly decreased food intake (14.0 ± 1.5 g) compared to controls (21.8 ± 0.5 g). 5-HT depletion was assessed post-mortem using immunohistochemistry and was later quantified. Collectively, these results demonstrate that leptin’s ability to regulate food intake is dependent on 5-HT, regardless of the area of regulation (i.e. DRN or the hypothalamus).more » « less
-
Hagfish consume carrion, potentially exposing them to hypoxia, hypercarbia, and high environmental ammonia (HEA). We investigated branchial and cutaneous ammonia handling strategies by which Pacific hagfish (Eptatretus stoutii) tolerate and recover from high ammonia loading. Hagfish were exposed to HEA (20 mmol L-1) for 48 h to elevate plasma total ammonia (TAmm) levels before placement into divided chambers for a 4 h recovery period in ammonia-free seawater where ammonia excretion (JAmm) was measured independently in the anterior and posterior compartments. Localized HEA exposures were also conducted by subjecting hagfish to HEA in either the anterior or posterior compartments. During recovery, HEA-exposed animals increased JAmm in both compartments, with the posterior compartment comprising ~20% of the total JAmm compared to ~11% in non-HEA exposed fish. Plasma TAmm increased substantially when whole hagfish, and the posterior regions, were exposed to HEA. Alternatively, plasma TAmm did not elevate following anteriorly-localized HEA exposure. JAmm was concentration-dependent (0.05-5 mmol L-1) across excised skin patches at up to 8-fold greater rates than in skin sections that were excised from HEA-exposed hagfish. Skin excised from more posterior regions displayed greater JAmm than those from more anterior regions. Immunohistochemistry with hagfish-specific anti-rhesus glycoprotein type c (α-hRhcg; ammonia transporter) antibodies was characterized by staining on the basal aspect of hagfish epidermis while Western blotting demonstrated greater expression of Rhcg in more posterior skin sections. We conclude that cutaneous Rhcg proteins are involved in cutaneous ammonia excretion by Pacific hagfish, and that this mechanism could be particularly important during feeding.more » « less
An official website of the United States government

