skip to main content


Search for: All records

Award ID contains: 1754550

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Plasma serotonin (5-hydroxytryptamine, 5-HT) homeostasis is maintained through the combined processes of uptake (via the 5-HT transporter SERT, and others), degradation (via monoamine oxidase, MAO) and excretion. Previous studies have shown that inhibiting SERT, which would inhibit 5-HT uptake and degradation, attenuates parts of the cardiovascular hypoxia reflex in gulf toadfish (Opsanus beta), suggesting that these 5-HT clearance processes may be important during hypoxia exposure. Therefore, the goal of this experiment was to determine the effects of mild hypoxia on 5-HT uptake and degradation in the peripheral tissues of toadfish. We hypothesized that 5-HT uptake and degradation would be upregulated during hypoxia, resulting in lower plasma 5-HT, with uptake occurring in the gill, heart, liver and kidney. Fish were exposed to normoxia (97.6% O2 saturation, 155.6 Torr) or 2 min, 40 min or 24 h mild hypoxia (50% O2 saturation, ∼80 Torr), then injected with radiolabeled [3H]5-HT before blood, urine, bile and tissues were sampled. Plasma 5-HT levels were reduced by 40% after 40 min of hypoxia exposure and persisted through 24 h. 5-HT uptake by the gill was upregulated following 2 min of hypoxia exposure, and degradation in the gill was upregulated at 40 min and 24 h. Interestingly, there was no change in 5-HT uptake by the heart and degradation in the heart decreased by 58% within 2 min of hypoxia exposure and by 85% at 24 h. These results suggest that 5-HT clearance is upregulated during hypoxia and is likely driven, in part, by mechanisms within the gill and not the heart. 
    more » « less
  2. null (Ed.)
    The neurotransmitter serotonin (5-hyroxytryptamine, 5-HT) is involved in a variety of peripheral processes. Arguably most notable is its role as a circulating vasoconstrictor in the plasma of vertebrates. Plasma 5-HT is maintained at constant levels under normal conditions through the processes of cellular uptake, degradation, and excretion, known collectively as clearance. However, the degree to which each individual component of clearance contributes to this whole animal response remains poorly understood. The goal of this experiment was to determine the extent to which transporter-mediated uptake and intracellular degradation contribute to 5-HT clearance in the model teleost Gulf toadfish (Opsanus beta). Fish that were treated with the 5-HT transport inhibitors fluoxetine, buproprion, and decynium-22 had 1.47-fold higher plasma 5-HT concentrations and a 40% decrease in clearance rate compared to control fish. In contrast, fish treated with the MAO inhibitor clorgyline had a 1.54-fold increase in plasma 5-HT with no change in clearance rate. The results show that transporter-mediated 5-HT uptake plays an important role in controlling circulating 5-HT and whole body 5-HT homeostasis. 
    more » « less