skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The fate of hints: updated global analysis of three-flavor neutrino oscillations
A bstract Our herein described combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrino mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1 . 6 σ level. Combined with the χ 2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis the hint for NO is at 2 . 7 σ . The CP conserving value δ CP = 180° is within 0 . 6 σ of the global best fit point. Only if we restrict to inverted mass ordering, CP violation is favored at the ∼ 3 σ level. We discuss the origin of these results — which are driven by the new data from the T2K and NOvA long-baseline experiments —, and the relevance of the LBL-reactor oscillation frequency complementarity. The previous 2 . 2 σ tension in ∆ m 2 21 preferred by KamLAND and solar experiments is also reduced to the 1 . 1 σ level after the inclusion of the latest Super-Kamiokande solar neutrino results. Finally we present updated allowed ranges for the oscillation parameters and for the leptonic Jarlskog determinant from the global analysis.  more » « less
Award ID(s):
1915093
PAR ID:
10232450
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5 $$\sigma $$ σ , for all $$\delta _{\mathrm{CP}}$$ δ CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 $$\sigma $$ σ (5 $$\sigma $$ σ ) after an exposure of 5 (10) years, for 50% of all $$\delta _{\mathrm{CP}}$$ δ CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to $$\sin ^{2} 2\theta _{13}$$ sin 2 2 θ 13 to current reactor experiments. 
    more » « less
  2. The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of 19.7 ( 16.3 ) × 10 20 protons on target in (anti)neutrino mode, the analysis finds a 1.9 σ exclusion of C P conservation (defined as J C P = 0 ) and a 1.2 σ exclusion of the inverted mass ordering. Published by the American Physical Society2025 
    more » « less
  3. A bstract We evaluate the statistical significance of the 3+1 sterile-neutrino hypothesis using ν e and $$ \overline{\nu} $$ ν ¯ e disappearance data from reactor, solar and gallium radioactive source experiments. Concerning the latter, we investigate the implications of the recent BEST results. For reactor data we focus on relative measurements independent of flux predictions. For the problem at hand, the usual χ 2 -approximation to hypothesis testing based on Wilks’ theorem has been shown in the literature to be inaccurate. We therefore present results based on Monte Carlo simulations, and find that this typically reduces the significance by roughly 1 σ with respect to the naïve expectation. We find no significant indication in favor of sterile-neutrino oscillations from reactor data. On the other hand, gallium data (dominated by the BEST result) show more than 5 σ of evidence supporting the sterile-neutrino hypothesis, favoring oscillation parameters in agreement with constraints from reactor data. This explanation is, however, in significant tension (∼ 3 σ ) with solar neutrino experiments. In order to assess the robustness of the signal for gallium experiments we present a discussion of the impact of cross-section uncertainties on the results. 
    more » « less
  4. Abstract The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment under construction in South China. This paper presents an updated estimate of JUNO’s sensitivity to neutrino mass ordering using the reactor antineutrinos emitted from eight nuclear reactor cores in the Taishan and Yangjiang nuclear power plants. This measurement is planned by studying the fine interference pattern caused by quasi-vacuum oscillations in the oscillated antineutrino spectrum at a baseline of 52.5 km and is completely independent of the CP violating phase and neutrino mixing angleθ23. The sensitivity is obtained through a joint analysis of JUNO and Taishan Antineutrino Observatory (TAO) detectors utilizing the best available knowledge to date about the location and overburden of the JUNO experimental site, local and global nuclear reactors, JUNO and TAO detector responses, expected event rates and spectra of signals and backgrounds, and systematic uncertainties of analysis inputs. We find that a 3σmedian sensitivity to reject the wrong mass ordering hypothesis can be reached with an exposure of about 6.5 years × 26.6 GW thermal power. 
    more » « less
  5. null (Ed.)
    A bstract We explore how well reactor antineutrino experiments can constrain or measure the loss of quantum coherence in neutrino oscillations. We assume that decoherence effects are encoded in the size of the neutrino wave-packet, σ . We find that the current experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) already constrain σ > 1 . 0 × 10 − 4 nm and estimate that future data from the Jiangmen Underground Neutrino Observatory (JUNO) would be sensitive to σ < 2 . 1 × 10 − 3 nm. If the effects of loss of coherence are within the sensitivity of JUNO, we expect σ to be measured with good precision. The discovery of nontrivial decoherence effects in JUNO would indicate that our understanding of the coherence of neutrino sources is, at least, incomplete. 
    more » « less