skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: ILMPQ : An Intra-Layer Multi-Precision Deep Neural Network Quantization framework for FPGA
This work targets the commonly used FPGA (field-programmable gate array) devices as the hardware platform for DNN edge computing. We focus on DNN quantization as the main model compression technique. The novelty of this work is: We use a quantization method that supports multiple precisions along the intra-layer dimension, while the existing quantization methods apply multi-precision quantization along the inter-layer dimension. The intra-layer multi-precision method can uniform the hardware configurations for different layers to reduce computation overhead and at the same time preserve the model accuracy as the inter-layer approach. Our proposed ILMPQ DNN quantization framework achieves 70.73% Top1 accuracy in ResNet-18 on the ImageNet dataset. We also validate the proposed MSP framework on two FPGA devices i.e., Xilinx XC7Z020 and XC7Z045. We achieve 3.65× speedup in end-to-end inference time on the ImageNet, comparing with the fixed-point quantization method.  more » « less
Award ID(s):
1901378
PAR ID:
10232481
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Fifth Workshop on Cognitive Architectures (CogArch 2021)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Neural Networks (DNNs) have shown significant advantages in a wide variety of domains. However, DNNs are becoming computationally intensive and energy hungry at an exponential pace, while at the same time, there is a vast demand for running sophisticated DNN-based services on resource constrained embedded devices. In this paper, we target energy-efficient inference on embedded DNN accelerators. To that end, we propose an automated framework to compress DNNs in a hardware-aware manner by jointly employing pruning and quantization. We explore, for the first time, per-layer fine- and coarse-grained pruning, in the same DNN architecture, in addition to low bit-width mixed-precision quantization for weights and activations. Reinforcement Learning (RL) is used to explore the associated design space and identify the pruning-quantization configuration so that the energy consumption is minimized whilst the prediction accuracy loss is retained at acceptable levels. Using our novel composite RL agent we are able to extract energy-efficient solutions without requiring retraining and/or fine-tuning. Our extensive experimental evaluation over widely used DNNs and the CIFAR-10/100 and ImageNet datasets demonstrates that our framework achieves 39% average energy reduction for 1.7% average accuracy loss and outperforms significantly the state-of-the-art approaches. 
    more » « less
  2. null (Ed.)
    To deploy powerful deep neural network (DNN) into smart, but resource limited IoT devices, many prior works have been proposed to compress DNN to reduce the network size and computation complexity with negligible accuracy degradation, such as weight quantization, network pruning, convolution decomposition, etc. However, by utilizing conventional DNN compression methods, a smaller, but fixed, network is generated from a relative large background model to achieve resource limited hardware acceleration. However, such optimization lacks the ability to adjust its structure in real-time to adapt for a dynamic computing hardware resource allocation and workloads. In this paper, we mainly review our two prior works [13], [15] to tackle this challenge, discussing how to construct a dynamic DNN by means of either uniform or non-uniform sub-nets generation methods. Moreover, to generate multiple non-uniform sub-nets, [15] needs to fully retrain the background model for each sub-net individually, named as multi-path method. To reduce the training cost, in this work, we further propose a single-path sub-nets generation method that can sample multiple sub-nets in different epochs within one training round. The constructed dynamic DNN, consisting of multiple sub-nets, provides the ability to run-time trade-off the inference accuracy and latency according to hardware resources and environment requirements. In the end, we study the the dynamic DNNs with different sub-nets generation methods on both CIFAR-10 and ImageNet dataset. We also present the run-time tuning of accuracy and latency on both GPU and CPU. 
    more » « less
  3. The wide deployment of Deep Neural Networks (DNN) in high-performance cloud computing platforms brought to light multi-tenant cloud field-programmable gate arrays (FPGA) as a popular choice of accelerator to boost performance due to its hardware reprogramming flexibility. Such a multi-tenant FPGA setup for DNN acceleration potentially exposes DNN interference tasks under severe threat from malicious users. This work, to the best of our knowledge, is the first to explore DNN model vulnerabilities in multi-tenant FPGAs. We propose a novel adversarial attack framework: Deep-Dup, in which the adversarial tenant can inject adversarial faults to the DNN model in the victim tenant of FPGA. Specifically, she can aggressively overload the shared power distribution system of FPGA with malicious power-plundering circuits, achieving adversarial weight duplication (AWD) hardware attack that duplicates certain DNN weight packages during data transmission between off-chip memory and on-chip buffer, to hijack the DNN function of the victim tenant. Further, to identify the most vulnerable DNN weight packages for a given malicious objective, we propose a generic vulnerable weight package searching algorithm, called Progressive Differential Evolution Search (P-DES), which is, for the first time, adaptive to both deep learning white-box and black-box attack models. The proposed Deep-Dup is experimentally validated in a developed multi-tenant FPGA prototype, for two popular deep learning applications, i.e., Object Detection and Image Classification. Successful attacks are demonstrated in six popular DNN architectures (e.g., YOLOv2, ResNet-50, MobileNet, etc.) on three datasets (COCO, CIFAR-10, and ImageNet). 
    more » « less
  4. null (Ed.)
    With the success of Deep Neural Networks (DNN), many recent works have been focusing on developing hardware accelerator for power and resource-limited system via model compression techniques, such as quantization, pruning, low-rank approximation and etc. However, almost all existing compressed DNNs are fixed after deployment, which lacks run-time adaptive structure to adapt to its dynamic hardware resource allocation, power budget, throughput requirement, as well as dynamic workload. As the countermeasure, to construct a novel run-time dynamic DNN structure, we propose a novel DNN sub-network sampling method via non-uniform channel selection for subnets generation. Thus, user can trade off between power, speed, computing load and accuracy on-the-fly after the deployment, depending on the dynamic requirements or specifications of the given system. We verify the proposed model on both CIFAR-10 and ImageNet dataset using ResNets, which outperforms the same sub-nets trained individually and other related works. It shows that, our method can achieve latency trade-off among 13.4, 24.6, 41.3, 62.1(ms) and 30.5, 38.7, 51, 65.4(ms) for GPU with 128 batch-size and CPU respectively on ImageNet using ResNet18. 
    more » « less
  5. Convolutional neural network (CNN)-based object detection has achieved very high accuracy; e.g., single-shot multi-box detectors (SSDs) can efficiently detect and localize various objects in an input image. However, they require a high amount of computation and memory storage, which makes it difficult to perform efficient inference on resource-constrained hardware devices such as drones or unmanned aerial vehicles (UAVs). Drone/UAV detection is an important task for applications including surveillance, defense, and multi-drone self-localization and formation control. In this article, we designed and co-optimized an algorithm and hardware for energy-efficient drone detection on resource-constrained FPGA devices. We trained an SSD object detection algorithm with a custom drone dataset. For inference, we employed low-precision quantization and adapted the width of the SSD CNN model. To improve throughput, we use dual-data rate operations for DSPs to effectively double the throughput with limited DSP counts. For different SSD algorithm models, we analyze accuracy or mean average precision (mAP) and evaluate the corresponding FPGA hardware utilization, DRAM communication, and throughput optimization. We evaluated the FPGA hardware for a custom drone dataset, Pascal VOC, and COCO2017. Our proposed design achieves a high mAP of 88.42% on the multi-drone dataset, with a high energy efficiency of 79 GOPS/W and throughput of 158 GOPS using the Xilinx Zynq ZU3EG FPGA device on the Open Vision Computer version 3 (OVC3) platform. Our design achieves 1.1 to 8.7× higher energy efficiency than prior works that used the same Pascal VOC dataset, using the same FPGA device, but at a low-power consumption of 2.54 W. For the COCO dataset, our MobileNet-V1 implementation achieved an mAP of 16.8, and 4.9 FPS/W for energy-efficiency, which is ∼ 1.9× higher than prior FPGA works or other commercial hardware platforms. 
    more » « less