Abstract Understanding of phase‐stability and nanoscale structural modulation during lithiation of layer materials demand comprehensive analysis of the Li‐containing phases in the solid‐state reaction products. Conventional chemical analysis methods in the transmission electron microscope (TEM) are not ideal to detect Li in partially intercalated nanodomains because Li atoms do not remain stationary under the focused electron beam. An alternate approach combining density functional theory (DFT) modeling and multislice image simulation has been explored in the present study to analyze the intercalated structures and to detect and quantify Li from the recorded high‐resolution TEM (HRTEM) micrographs of partially intercalated phases. HRTEM micrographs from partially lithiated graphite and MoS2show variations in the interlayer spacings, but are not usually directly interpretable. Hypothetical intercalated microstructures of graphite and MoS2supercells have been generated using atomic‐scale simulations with systematically varying Li concentrations. The measured interplanar spacings are compared with those of experimentally recorded HRTEM micrographs from lithiated graphite and MoS2. The results confirm the coexistence of different lithiated phases at localized domains. This understanding of phase transformation and the lithium quantification provides a basis for understanding the structural accommodation of layered materials during intercalation.
more »
« less
Molecular-level environments of intercalated chloroaluminate anions in rechargeable aluminum-graphite batteries revealed by solid-state NMR spectroscopy
Rechargeable aluminum–graphite batteries are an emerging energy storage technology with great promise: they exhibit high rate performance, cyclability, and a discharge potential of approximately 2 V, while both electrodes are globally abundant, low cost, and inherently safe. The batteries use chloroaluminate-containing electrolytes and store charge in the graphite electrodes when molecular AlCl 4 − anions electrochemically intercalate within them. However, much remains to be understood regarding the ion intercalation mechanism, in part due to challenges associated with characterizing the chloroaluminate anions themselves. Here, we use solid-state 27 Al nuclear magnetic resonance (NMR) spectroscopy to probe the molecular-level electronic and magnetic environments of intercalated chloroaluminate anions at different states-of-charge. The results reveal broad 27 Al NMR signals associated with intercalated AlCl 4 − anions, reflecting high extents of local disorder. The intercalated anions experience a diversity of local environments, many of which are far from the ideal crystalline-like structures often depicted in graphite staging models. Density functional theory (DFT) calculations of the total 27 Al isotropic shifts enable the contributions of chemical shift, ring-current effects, and electric quadrupolar interactions to be disentangled quantitatively. In combination, the solid-state NMR and DFT results reveal the molecular geometries and environments of intercalated AlCl 4 − anions and capture the significant disorder present in intercalated graphite battery electrodes.
more »
« less
- Award ID(s):
- 1706926
- PAR ID:
- 10232494
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 8
- Issue:
- 31
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 16006 to 16017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solid‐state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational‐echo double‐resonance (REDOR) NMR to interrogate13C–1H distances is exploited along with DFT determinations of the13C tensor of carbonates (CO32−). Nearby1H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3⋅Mg(OH)2⋅4 H2O]. A match between the calculated structure and solid‐state NMR was found by testing multiple semi‐local and dispersion‐corrected DFT functionals and applying them to optimize atom positions, starting from X‐ray diffraction (XRD)‐determined atomic coordinates. This was validated by comparing calculated to experimental13C{1H} REDOR and13C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid‐state NMR, XRD, and DFT can improve structure refinement for hydrated materials.more » « less
-
Organic ionic plastic crystals (OIPCs) are emerging as promising electrolyte materials for solid-state batteries. However, despite the fast ionic diffusion, OIPCs exhibit relatively low DC conductivity in solid phases caused by strong ion-ion correlations that suppress charge transport. To understand the origin of this suppression, we performed a study of ion dynamics in the OIPC 1-Ethyl-1-methylpyrrolidinium bis (trifluoromethyl sulfonyl) imide [P12][TFSI] utilizing dielectric spectroscopy, light scattering, and Nuclear Magnetic Resonance diffusometry. Comparison of the results obtained in this study with the published earlier results on an OIPC with a completely different structure (Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate [P1,2,2,4][PF6]) revealed strong similarities in ion dynamics in both systems. Unlike DC conductivity, which may drop more than ten times between melted and solid phases, diffusion of anions and cations remains high and does not show strong changes at phase transition. The conductivity spectra in the broad frequency range demonstrate unusual shapes in solid phases with an additional step separating fast local ion motions from suppressed long-range charge diffusion controlling DC conductivity. We suggested that in solid phases, anions and cations can jump only between the specific ion sites defined by the crystalline structure. These constraints lead to strong cation-cation and anion-anion correlations strongly suppressing long-range charge transport.more » « less
-
The performance of Li metal batteries is tightly coupled to the composition and properties of the solid electrolyte interphase (SEI). Even though the role of the SEI in battery function is well understood (e.g., it must be electronically insulating and ionically conductive, it must enable uniform Li+ flux to the electrode to prevent filament growth, it must accommodate the large volume changes of Li electrodeposition), the challenges associated with probing this delicate composite layer have hindered the development of Li metal batteries for practical applications. In this review, we detail how nuclear magnetic resonance (NMR) spectroscopy can help bridge this gap in characterization due to its unique ability to describe local structure (e.g., changes in crystallite size and amorphous species in the SEI) in conjunction with ion dynamics while connecting these properties to electrochemical behavior. By leveraging NMR, we can gain molecular-level insight to aid in the design of Li surfaces and enable reactive anodes for next-generation, high-energy-density batteries.more » « less
-
Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport (Dapp). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict Dapp for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in Dapp (≈10–6 cm2 s–1) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities.more » « less
An official website of the United States government

