Abstract Over the past 40 years, the Arctic sea ice minimum in September has declined. The period between 2007 and 2012 showed accelerated melt contributed to the record minima of 2007 and 2012. Here, observational and model evidence shows that the changes in summer sea ice since the 2000s reflect a continuous anthropogenically forced melting masked by interdecadal variability of Arctic atmospheric circulation. This variation is partially driven by teleconnections originating from sea surface temperature (SST) changes in the east-central tropical Pacific via a Rossby wave train propagating into the Arctic [herein referred to as the Pacific–Arctic teleconnection (PARC)], which represents the leading internal mode connecting the pole to lower latitudes. This mode has contributed to accelerated warming and Arctic sea ice loss from 2007 to 2012, followed by slower declines in recent years, resulting in the appearance of a slowdown over the past 11 years. A pacemaker model simulation, in which we specify observed SST in the tropical eastern Pacific, demonstrates a physically plausible mechanism for the PARC mode. However, the model-based PARC mechanism is considerably weaker and only partially accounts for the observed acceleration of sea ice loss from 2007 to 2012. We also explore features of large-scale circulation patterns associated with extreme melting periods in a long (1800 yr) CESM preindustrial simulation. These results further support that remote SST forcing originating from the tropical Pacific can excite significant warm episodes in the Arctic. However, further research is needed to identify the reasons for model limitations in reproducing the observed PARC mode featuring a cold Pacific–warm Arctic connection.
more »
« less
An Internal Atmospheric Process Determining Summertime Arctic Sea Ice Melting in the Next Three Decades: Lessons Learned from Five Large Ensembles and Multiple CMIP5 Climate Simulations
Abstract Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received considerable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer (June–August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to remote sea surface temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five available large “initial condition” Earth system model ensembles and 31 CMIP5 models’ preindustrial control simulations to show that the same atmospheric process, resembling the observed one and the one found in the CESM-LE, also dominates internal sea ice variability in summer on interannual to interdecadal time scales in preindustrial, historical, and future scenarios, regardless of the modeling environment. However, all models exhibit limitations in replicating the magnitude of the observed local atmosphere–sea ice coupling and its sensitivity to remote tropical SST variability in the past four decades. These biases call for caution in the interpretation of existing models’ simulations and fresh thinking about models’ credibility in simulating interactions of sea ice variability with the Arctic and global climate systems. Further efforts toward identifying the causes of these model limitations may provide implications for alleviating the biases and improving interannual- and decadal-time-scale sea ice prediction and future sea ice projection.
more »
« less
- Award ID(s):
- 1744598
- PAR ID:
- 10232638
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 33
- Issue:
- 17
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 7431 to 7454
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding how internal atmospheric variability affects Greenland ice sheet (GrIS) summertime melting would improve understanding of future sea level rise. We analyze the Community Earth System Model Large Ensemble (CESM‐LE) over 1951–2000 and 2051–2100. We find that internal variability dominates the forced response on short timescales (~20 years) and that the area impacted by internal variability grows in the future, connecting internal variability and climate change. Unlike prior studies, we do not assume specific patterns of internal variability to affect GrIS melting but derive them from maximum covariance analysis. We find that the North Atlantic Oscillation (NAO) is the major source of internal atmospheric variability associated with GrIS melt conditions in CESM‐LE and reanalysis, with the positive phase (NAO+) linked to widespread cooling over the ice sheet. CESM‐LE and CMIP5 project an increase in the frequency of NAO+ events, suggesting a negative feedback to the GrIS under future climate change.more » « less
-
Abstract The rapid decline of summer Arctic sea ice over the past few decades has been driven by a combination of increasing greenhouse gases and internal variability of the climate system. However, uncertainties remain regarding spatial and temporal characteristics of the optimal internal atmospheric mode that most favors summer sea ice melting on low-frequency time scales. To pinpoint this mode, we conduct a suite of simulations in which atmospheric circulation is constrained by nudging tropospheric Arctic (60°–90°N) winds within the Community Earth System Model, version 1 (CESM1), to those from reanalysis. Each reanalysis year is repeated for over 10 model years using fixed greenhouse gas concentrations and the same initial conditions. Composites show the strongest September sea ice losses are closely preceded by a common June–August (JJA) barotropic anticyclonic circulation in the Arctic favoring shortwave absorption at the surface. Successive years of strong wind-driven melting also enhance declines in Arctic sea ice through enhancement of the ice–albedo feedback, reaching a quasi-equilibrium response after repeated wind forcing for over 5–6 years, as the effectiveness of the wind-driven ice–albedo feedback becomes saturated. Strong melting favored by a similar wind pattern as observations is detected in a long preindustrial simulation and 400-yr paleoclimate reanalysis, suggesting that a summer barotropic anticyclonic wind pattern represents the optimal internal atmospheric mode maximizing sea ice melting in both the model and natural world over a range of time scales. Considering strong contributions of this mode to changes in Arctic climate, a better understanding of its origin and maintenance is vital to improving future projections of Arctic sea ice.more » « less
-
Abstract The impact of interactive ocean dynamics on internal variations of Atlantic sea surface temperature (SST) is investigated by comparing preindustrial control simulations of a fully coupled atmosphere–ocean–ice model to the same atmosphere–ice model with the ocean replaced by a motionless slab layer (henceforth slab ocean model). Differences in SST variability between the two models are diagnosed by an optimization technique that finds components whose variance differs as much as possible. This technique reveals that Atlantic SST variability differs significantly between the two models. The two components with the most extreme enhancement of SST variance in the slab ocean model resemble the tripole SST pattern associated with the North Atlantic Oscillation (NAO) and the Atlantic multidecadal variability (AMV) pattern. This result supports previous claims that ocean dynamics are not necessary for the AMV, although ocean dynamics lead to slight increases in the memory of both the AMV and the NAO tripole. The component with the most extreme enhancement of SST variance in the fully coupled model resembles the Atlantic Niño pattern, confirming the ability of our technique to isolate physical modes known to require ocean dynamics. The second component with more variance in the fully coupled model is a mode of subpolar SST variability. Both the reemergence of SST anomalies and changes in ocean heat transport lead to increased SST variance and memory in the subpolar Atlantic. Despite large differences in the mean and variability of SST, atmospheric variability is quite similar between the two models, confirming that most atmospheric variability is generated by internal atmospheric dynamics.more » « less
-
Abstract Internal variability is the dominant cause of projection uncertainty of Arctic sea ice in the short and medium term. However, it is difficult to determine the realism of simulated internal variability in climate models, as observations only provide one possible realization while climate models can provide numerous different realizations. To enable a robust assessment of simulated internal variability of Arctic sea ice, we use a resampling technique to build synthetic ensembles for both observations and climate models, focusing on interannual variability, which is the dominant time scale of Arctic sea ice internal variability. We assess the realism of the interannual variability of Arctic sea ice cover as simulated by six models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that provide large ensembles compared to four observational datasets. We augment the standard definition of model and observational consistency by representing the full distribution of resamplings, analogous to the distribution of variability that could have randomly occurred. We find that modeled interannual variability typically lies within observational uncertainty. The three models with the smallest mean state biases are the only ones consistent in the pan-Arctic for all months, but no model is consistent for all regions and seasons. Hence, choosing the right model for a given task as well as using internal variability as an additional metric to assess sea ice simulations is important. The fact that CMIP5 large ensembles broadly simulate interannual variability consistent within observational uncertainty gives confidence in the internal projection uncertainty for Arctic sea ice based on these models. Significance Statement The purpose of this study is to evaluate the historical simulated internal variability of Arctic sea ice in climate models. Determining model realism is important to have confidence in the projected sea ice evolution from these models, but so far only mean state and trends are commonly assessed metrics. Here we assess internal variability with a focus on the interannual variability, which is the dominant time scale for internal variability. We find that, in general, models agree well with observations, but as no model is within observational uncertainty for all months and locations, choosing the right model for a given task is crucial. Further refinement of internal variability realism assessments will require reduced observational uncertainty.more » « less
An official website of the United States government

