skip to main content


Title: An Internal Atmospheric Process Determining Summertime Arctic Sea Ice Melting in the Next Three Decades: Lessons Learned from Five Large Ensembles and Multiple CMIP5 Climate Simulations
Abstract Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received considerable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer (June–August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to remote sea surface temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five available large “initial condition” Earth system model ensembles and 31 CMIP5 models’ preindustrial control simulations to show that the same atmospheric process, resembling the observed one and the one found in the CESM-LE, also dominates internal sea ice variability in summer on interannual to interdecadal time scales in preindustrial, historical, and future scenarios, regardless of the modeling environment. However, all models exhibit limitations in replicating the magnitude of the observed local atmosphere–sea ice coupling and its sensitivity to remote tropical SST variability in the past four decades. These biases call for caution in the interpretation of existing models’ simulations and fresh thinking about models’ credibility in simulating interactions of sea ice variability with the Arctic and global climate systems. Further efforts toward identifying the causes of these model limitations may provide implications for alleviating the biases and improving interannual- and decadal-time-scale sea ice prediction and future sea ice projection.  more » « less
Award ID(s):
1744598
NSF-PAR ID:
10232638
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
17
ISSN:
0894-8755
Page Range / eLocation ID:
7431 to 7454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the past 40 years, the Arctic sea ice minimum in September has declined. The period between 2007 and 2012 showed accelerated melt contributed to the record minima of 2007 and 2012. Here, observational and model evidence shows that the changes in summer sea ice since the 2000s reflect a continuous anthropogenically forced melting masked by interdecadal variability of Arctic atmospheric circulation. This variation is partially driven by teleconnections originating from sea surface temperature (SST) changes in the east-central tropical Pacific via a Rossby wave train propagating into the Arctic [herein referred to as the Pacific–Arctic teleconnection (PARC)], which represents the leading internal mode connecting the pole to lower latitudes. This mode has contributed to accelerated warming and Arctic sea ice loss from 2007 to 2012, followed by slower declines in recent years, resulting in the appearance of a slowdown over the past 11 years. A pacemaker model simulation, in which we specify observed SST in the tropical eastern Pacific, demonstrates a physically plausible mechanism for the PARC mode. However, the model-based PARC mechanism is considerably weaker and only partially accounts for the observed acceleration of sea ice loss from 2007 to 2012. We also explore features of large-scale circulation patterns associated with extreme melting periods in a long (1800 yr) CESM preindustrial simulation. These results further support that remote SST forcing originating from the tropical Pacific can excite significant warm episodes in the Arctic. However, further research is needed to identify the reasons for model limitations in reproducing the observed PARC mode featuring a cold Pacific–warm Arctic connection.

     
    more » « less
  2. Abstract The rapid decline of summer Arctic sea ice over the past few decades has been driven by a combination of increasing greenhouse gases and internal variability of the climate system. However, uncertainties remain regarding spatial and temporal characteristics of the optimal internal atmospheric mode that most favors summer sea ice melting on low-frequency time scales. To pinpoint this mode, we conduct a suite of simulations in which atmospheric circulation is constrained by nudging tropospheric Arctic (60°–90°N) winds within the Community Earth System Model, version 1 (CESM1), to those from reanalysis. Each reanalysis year is repeated for over 10 model years using fixed greenhouse gas concentrations and the same initial conditions. Composites show the strongest September sea ice losses are closely preceded by a common June–August (JJA) barotropic anticyclonic circulation in the Arctic favoring shortwave absorption at the surface. Successive years of strong wind-driven melting also enhance declines in Arctic sea ice through enhancement of the ice–albedo feedback, reaching a quasi-equilibrium response after repeated wind forcing for over 5–6 years, as the effectiveness of the wind-driven ice–albedo feedback becomes saturated. Strong melting favored by a similar wind pattern as observations is detected in a long preindustrial simulation and 400-yr paleoclimate reanalysis, suggesting that a summer barotropic anticyclonic wind pattern represents the optimal internal atmospheric mode maximizing sea ice melting in both the model and natural world over a range of time scales. Considering strong contributions of this mode to changes in Arctic climate, a better understanding of its origin and maintenance is vital to improving future projections of Arctic sea ice. 
    more » « less
  3. Over the last half century, the Arctic sea ice cover has declined dramatically. Current estimates suggest that, for the Arctic as a whole, nearly one-half of the observed loss of summer sea ice cover is not due to anthropogenic forcing but rather is due to internal variability. Using the 40 members of the Community Earth System Model Large Ensemble (CESM-LE), our analysis provides the first regional assessment of the role of internal variability on the observed sea ice loss. The CESM-LE is one of the best available models for such an analysis, because it performs better than other CMIP5 models for many metrics of importance. Our study reveals that the local contribution of internal variability has a large range and strongly depends on the month and region in question. We find that the pattern of internal variability is highly nonuniform over the Arctic, with internal variability accounting for less than 10% of late summer (August–September) East Siberian Sea sea ice loss but more than 60% of the Kara Sea sea ice loss. In contrast, spring (April–May) sea ice loss, notably in the Barents Sea, has so far been dominated by internal variability.

     
    more » « less
  4. Abstract

    Understanding how internal atmospheric variability affects Greenland ice sheet (GrIS) summertime melting would improve understanding of future sea level rise. We analyze the Community Earth System Model Large Ensemble (CESM‐LE) over 1951–2000 and 2051–2100. We find that internal variability dominates the forced response on short timescales (~20 years) and that the area impacted by internal variability grows in the future, connecting internal variability and climate change. Unlike prior studies, we do not assume specific patterns of internal variability to affect GrIS melting but derive them from maximum covariance analysis. We find that the North Atlantic Oscillation (NAO) is the major source of internal atmospheric variability associated with GrIS melt conditions in CESM‐LE and reanalysis, with the positive phase (NAO+) linked to widespread cooling over the ice sheet. CESM‐LE and CMIP5 project an increase in the frequency of NAO+ events, suggesting a negative feedback to the GrIS under future climate change.

     
    more » « less
  5. Abstract

    The El Niño—Southern Oscillation (ENSO) is an important mode of tropical Pacific atmosphere‐ocean variability that drives teleconnections with weather and climate globally. However, prior studies using state‐of‐the‐art climate models lack consensus regarding future ENSO projections and are often impacted by tropical Pacific sea‐surface temperature (SST) biases. We used 173 simulations from 29 climate models participating in the Coupled Model Intercomparison Project, version 6 (CMIP6) to analyze model biases and future ENSO projections. We analyzed two ENSO indices, namely the ENSO Longitude Index (ELI), which measures zonal shifts in tropical Pacific deep convection and accounts for changes in background SST, and the Niño 3.4 index, which measures SST anomalies in the central‐eastern equatorial Pacific. We found that the warm eastern tropical‐subtropical Pacific SST bias typical of previous generations of climate models persists into many of the CMIP6 models. Future projections of ENSO shift toward more El Niño‐like conditions based on ELI in 48% of simulations and 55% of models, in association with a future weakening of the zonal equatorial Pacific SST gradient. On the other hand, none of the models project a significant shift toward La Niña‐like conditions. The standard deviation of the Niño 3.4 index indicates a lack of consensus on whether an increase or decrease in ENSO variability is expected in the future. Finally, we found a possible relationship between historical SST and low‐level cloud cover biases in the ENSO region and future changes in ELI; however, this result may be impacted by limitations in data availability.

     
    more » « less