skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PAMS: Improving Privacy in Audio-Based Mobile Systems
Smartphones and mobile applications have become an integral part of our daily lives. This is reflected by the increase in mobile devices, applications, and revenue generated each year. However, this growth is being met with an increasing concern for user privacy, and there have been many incidents of privacy and data breaches related to smartphones and mobile applications in recent years. In this work, we focus on improving privacy for audio-based mobile systems. These applications will generally listen to all sounds in the environment and may record privacy-sensitive signals, such as speech, that may not be needed for the application. We present PAMS, a software development package for mobile applications. PAMS integrates a novel sound source filtering algorithm called Probabilistic Template Matching to generate a set of privacy-enhancing filters that remove extraneous sounds using learned statistical "templates" of these sounds. We demonstrate the effectiveness of PAMS by integrating it into a sleep monitoring system, with the intent to remove extraneous speech from breathing, snoring, and other sleep sounds that the system is monitoring. By comparing our PAMS enhanced sleep monitoring system with existing mobile systems, we show that PAMS can reduce speech intelligibility by up to 74.3% while maintaining similar performance in detecting sleeping sounds.  more » « less
Award ID(s):
1704899 1815274
PAR ID:
10232672
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things
Page Range / eLocation ID:
41 to 47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Breath monitoring is important for monitoring illnesses, such as sleep apnea, for people of all ages. One cause of concern for parents is sudden infant death syndrome (SIDS), where an infant suddenly passes away during sleep, usually due to complications in breathing. There are a variety of works and products on the market for monitoring breathing, especially for children and infants. Many of these are wearables that require you to attach an accessory onto the child or person, which can be uncomfortable. Other solutions utilize a camera, which can be privacy-intrusive and function poorly during the night, when lighting is poor. In this work, we introduce BuMA, an audio-based, non-intrusive, and contactless, breathing monitoring system. BuMA utilizes a microphone array, beamforming, and audio filtering to enhance the sounds of breathing by filtering out several common noises in or near home environments, such as construction, speech, and music, that could make detection difficult. We show that BuMA improves breathing detection accuracy by up to 12%, within 30cm from a person, over existing audio filtering algorithms or platforms that do not leverage filtering. 
    more » « less
  2. Abstract Small‐to‐medium businesses are always seeking affordable ways to advertise their products and services securely. With the emergence of mobile technology, it is possible than ever to implement innovative Location‐Based Advertising (LBS) systems using smartphones that preserve the privacy of mobile users. In this paper, we present a prototype implementation of such systems by developing a distributed privacy‐preserving system, which has parts executing on smartphones as a mobile app, as well as a web‐based application hosted on the cloud. The mobile app leverages Google Maps libraries to enhance the user experience in using the app. Mobile users can use the app to commute to their daily destinations while viewing relevant ads such as job openings in their neighborhood, discounts on favorite meals, etc. We developed a client‐server privacy architecture that anonymizes the mobile user trajectories using a bounded perturbation strategy. A multi‐modal sensing approach is proposed for modeling the context switching of the developed LBS system, which we represent as a Finite State Machine model. The multi‐modal sensing approach can reduce the power consumed by mobile devices by automatically detecting sensing mode changes to avoid unnecessary sensing. The developed LBS system is organized into two parts: the business side and the user side. First, the business side allows business owners to create new ads by providing the ad details, Geo‐location, photos, and any other instructions. Second, the user side allows mobile users to navigate through the map to see ads while walking, driving, bicycling, or quietly sitting in their offices. Experimental results are presented to demonstrate the scalability and performance of the mobile side. Our experimental evaluation demonstrates that the mobile app incurs low processing overhead and consequently has a small energy footprint. 
    more » « less
  3. Audio is valuable in many mobile, embedded, and cyber-physical systems. We propose AvA, an acoustic adaptive filtering architecture, configurable to a wide range of applications and systems. By incorporating AvA into their own systems, developers can select which sounds to enhance or filter out depending on their application needs. AvA accomplishes this by using a novel adaptive beamforming algorithm called content-informed adaptive beam-forming (CIBF), that directly uses detectors and sound models that developers have created for their own applications to enhance or filter out sounds. CIBF uses a novel three step approach to prop-agate gradients from a wide range of different model types and signal feature representations to learn filter coefficients. We apply AvA to four scenarios and demonstrate that AvA enhances their respective performances by up to 11.1%. We also integrate AvA into two different mobile/embedded platforms with widely different resource constraints and target sounds/noises to show the boosts in performance and robustness these applications can see using AvA. 
    more » « less
  4. In this work, we proposeMiSleep, a deep learning augmented millimeter-wave (mmWave) wireless system to monitor human sleep posture by predicting the 3D location of the body joints of a person during sleep. Unlike existing vision- or wearable-based sleep monitoring systems,MiSleepis not privacy-invasive and does not require users to wear anything on their body.MiSleepleverages knowledge of human anatomical features and deep learning models to solve challenges in existing mmWave devices with low-resolution and aliased imaging, and specularity in signals.MiSleepbuilds the model by learning the relationship between mmWave reflected signals and body postures from thousands of existing samples. Since a practical sleep also involves sudden toss-turns, which could introduce errors in posture prediction,MiSleepdesigns a state machine based on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during the rest states. We evaluateMiSleepwith real data collected from Commercial-Off-The-Shelf mmWave devices for 8 volunteers of diverse ages, genders, and heights performing different sleep postures. We observe thatMiSleepidentifies the toss-turn events start time and duration within 1.25 s and 1.7 s of the ground truth, respectively, and predicts the 3D location of body joints with a median error of 1.3 cm only and can perform even under the blankets, with accuracy on par with the existing vision-based system, unlocking the potential of mmWave systems for privacy-noninvasive at-home healthcare applications. 
    more » « less
  5. Today, various sensor technologies have been introduced to help people keep track of their daily living activities. For example, a wide range of sensors were integrated in applications to develop a smart home, a mobile emergency response system and a fall detection system. Sensor technologies were also employed in clinical settings for monitoring an early sign or onset of Alzheimer’s diseases, dementia, abnormal sleep disorder, and heart rate problems. However, there has been a lack of attention paid to comprehensive reviews, valuable especially for young, early-career scholars who just developed research interests in this area. This paper reviewed the existing sensor technologies by considering various contexts such as sensor features, data of interests, locations of sensors, and the number of sensors. For instance, sensor technologies provided various features that enabled people to monitor biomechanics of human movement (e.g., walking speed), use of household goods (e.g., switch on/off of home appliances), sounds (e.g., sounds in a particular room), and surrounding environments (e.g., temperature and humidity). Sensor technologies were widely used to examine various data, such as biomarkers for health, dietary habits, leisure activities, and hygiene status. Sensors were installed in various locations to cover wide-open area (e.g., ceilings, wall, and hallway), specific area (e.g., a bedroom and a dining room), and specific objects (e.g., mattresses and windows). Different sets of sensors were employed to keep track of activities of daily living, which ranged from a single sensor to multiple sensors to cover throughout the home. This comprehensive reviews for sensor technology implementations are anticipated to help many researchers and professionals to design, develop, and use sensor technology applications adequately in the target user’s contexts by promoting safety, usability, and accessibility. 
    more » « less