null
(Ed.)
Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacteria interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and resultant ecological consequences remains a fundamental challenge. The bacterial quorum sensing signal 2-heptyl-4-quinolone (HHQ), induces immediate, yet reversible, cellular stasis (no cell division nor mortality) in the coccolithophore, Emiliania huxleyi, however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to a prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum sensing signals in regulating multi-trophic interactions. Furthermore, our data demonstrate in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean.
more »
« less
An official website of the United States government

