skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite-Blocklength and Error-Exponent Analyses for LDPC Codes in Point-to-Point and Multiple Access Communication
This paper applies error-exponent and dispersionstyle analyses to derive finite-blocklength achievability bounds for low-density parity-check (LDPC) codes over the point-to-point channel (PPC) and multiple access channel (MAC). The error-exponent analysis applies Gallager's error exponent to bound achievable symmetrical and asymmetrical rates in the MAC. The dispersion-style analysis begins with a generalization of the random coding union (RCU) bound from random code ensembles with i.i.d. codewords to random code ensembles in which codewords may be statistically dependent; this generalization is useful since the codewords of random linear codes such as LDPC codes are dependent. Application of the RCU bound yields finite-blocklength error bounds and asymptotic achievability results for both i.i.d. random codes and LDPC codes. For discrete, memoryless channels, these results show that LDPC codes achieve first- and second-order performance that is optimal for the PPC and identical to the best prior results for the MAC.  more » « less
Award ID(s):
1817241
PAR ID:
10232783
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 IEEE International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
361 to 366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a nested low-density parity-check (LDPC) code design. Combining this nested LDPC code with the random access coding strategy introduced by Yavas, Kostina, and Effros yields a random access LDPC (RA-LDPC) code for reliable communication in random access communication environments where neither the transmitters nor the receiver knows which or even how many transmitters wish to communicate at each moment. Coordination is achieved using sparse scheduled feedback. Bounds on the finite-blocklength performance of the RA-LDPC code under maximum likelihood (ML) decoding are derived using both error exponent and dispersion style analyses. Results include bounds on the penalty of the RA-LDPC code as a function of the LDPC code densities. 
    more » « less
  2. This paper discusses the contemporary problem of providing multiple-access (MAC) to a massive number of uncoordinated users. First, we define a random-access code for Ka-user Gaussian MAC to be a collection of norm-constrained vectors such that the noisy sum of any Ka of them can be decoded with a given (suitably defined) probability of error. An achievability bound for such codes is proposed and compared against popular practical solutions: ALOHA, coded slotted ALOHA, CDMA, and treating interference as noise. It is found out that as the number of users increases existing solutions become vastly energy-inefficient. Second, we discuss the asymptotic (in blocklength) problem of coding for a K-user Gaussian MAC when K is proportional to blocklength and each user’s payload is fixed. It is discovered that the energy-per-bit vs. spectral efficiency exhibits a rather curious tradeoff in this case. 
    more » « less
  3. This paper presents new achievability bounds on the maximal achievable rate of variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC) at a fixed message size M=2^k . We provide bounds for two cases: The first case considers VLSF codes with possibly infinite decoding times and zero error probability. The second case limits the maximum (finite) number of decoding times and specifies a maximum tolerable probability of error. Both new achievability bounds are proved by constructing a new VLSF code that employs systematic transmission of the first k message bits followed by random linear fountain parity bits decoded with a rank decoder. For VLSF codes with infinite decoding times, our new bound outperforms the state-of-the-art result for BEC by Devassy et al. in 2016. We show that the backoff from capacity reduces to zero as the erasure probability decreases, thus giving a negative answer to the open question Devassy et al. posed on whether the 23.4% backoff to capacity at k=3 is fundamental to all BECs. For VLSF codes with finite decoding times, numerical evaluations show that the systematic transmission followed by random linear fountain coding performs better than random linear coding in terms of achievable rates. 
    more » « less
  4. This paper applies probabilistic amplitude shaping (PAS) to cyclic redundancy check (CRC)-aided tail-biting trellis-coded modulation (TCM). CRC-TCM-PAS produces practical codes for short block lengths on the additive white Gaussian noise (AWGN) channel. In the transmitter, equally likely message bits are encoded by a distribution matcher (DM) generating amplitude symbols with a desired distribution. A CRC is appended to the sequence of amplitude symbols, and this sequence is then encoded and modulated by TCM to produce real-valued channel input signals. This paper proves that the sign values produced by the TCM are asymptotically equally likely to be positive or negative. The CRC-TCM-PAS scheme can thus generate channel input symbols with a symmetric capacity-approaching probability mass function. The paper provides an analytical upper bound on the frame error rate of the CRC-TCM-PAS system over the AWGN channel. This FER upper bound is the objective function used for jointly optimizing the CRC and convolutional code. Additionally, this paper proposes a multi-composition DM, which is a collection of multiple constant-composition DMs. The optimized CRC-TCM-PAS systems achieve frame error rates below the random coding union (RCU) bound in AWGN and outperform the short-blocklength PAS systems with various other forward error correction codes studied in [2]. 
    more » « less
  5. This paper applies probabilistic amplitude shaping (PAS) to a cyclic redundancy check (CRC) aided trellis coded modulation (TCM) to achieve the short-blocklength random coding union (RCU) bound. In the transmitter, the equally likely message bits are first encoded by distribution matcher to generate amplitude symbols with the desired distribution. The binary representations of the distribution matcher outputs are then encoded by a CRC. Finally, the CRC-encoded bits are encoded and modulated by Ungerboeck's TCM scheme, which consists of a k/(k+1) systematic tail-biting convolutional code and a mapping function that maps coded bits to channel signals with capacity-achieving distribution. This paper proves that, for the proposed transmitter, the CRC bits have uniform distribution and that the channel signals have symmetric distribution. In the receiver, the serial list Viterbi decoding (S-LVD) is used to estimate the information bits. Simulation results show that, for the proposed CRC-TCM-PAS system with 87 input bits and 65-67 8-AM coded output symbols, the decoding performance under additive white Gaussian noise channel achieves the RCU bound with properly designed CRC and convolutional codes. 
    more » « less