skip to main content


Title: Global Analysis of RNA-Dependent RNA Polymerase-Dependent Small RNAs Reveals New Substrates and Functions for These Proteins and SGS3 in Arabidopsis
RNA silencing pathways control eukaryotic gene expression transcriptionally or posttranscriptionally in a sequence-specific manner. In RNA silencing, the production of double-stranded RNA (dsRNA) gives rise to various classes of 20–24 nucleotide (nt) small RNAs (smRNAs). In Arabidopsis thaliana, smRNAs are often derived from long dsRNA molecules synthesized by one of the six genomically encoded RNA-dependent RNA Polymerase (RDR) proteins. However, the full complement of the RDR-dependent smRNAs and functions that these proteins and their RNA-binding cofactors play in plant RNA silencing has not been fully uncovered. To address this gap, we performed a global genomic analysis of all six RDRs and two of their cofactors to find new substrates for RDRs and targets of the resulting RDR-derived siRNAs to uncover new functions for these proteins in plants. Based on these analyses, we identified substrates for the three RDRγ clade proteins (RDR3–5), which had not been well-characterized previously. We also identified new substrates for the other three RDRs (RDR1, RDR2, and RDR6) as well as the RDR2 cofactor RNA-directed DNA methylation 12 (RDM12) and the RDR6 cofactor suppressor of gene silencing 3 (SGS3). These findings revealed that the target substrates of SGS3 are not limited to those solely utilized by RDR6, but that this protein seems to be a more general cofactor for the RDR family of proteins. Additionally, we found that RDR6 and SGS3 are involved in the production of smRNAs that target transcripts related to abiotic stresses, including water deprivation, salt stress, and ABA response, and as expected the levels of these mRNAs are increased in rdr6 and sgs3 mutant plants. Correspondingly, plants that lack these proteins (rdr6 and sgs3 mutants) are hypersensitive to ABA treatment, tolerant to high levels of PEG8000, and have a higher survival rate under salt treatment in comparison to wild-type plants. In total, our analyses have provided an extremely data-rich resource for uncovering new functions of RDR-dependent RNA silencing in plants, while also revealing a previously unexplored link between the RDR6/SGS3-dependent pathway and plant abiotic stress responses.  more » « less
Award ID(s):
1849708 2023310
NSF-PAR ID:
10232791
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Non-Coding RNA
Volume:
7
Issue:
2
ISSN:
2311-553X
Page Range / eLocation ID:
28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways.

     
    more » « less
  2. Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize ( Zea mays ), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption ( mop1-1 ) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize. 
    more » « less
  3. The RNA interference (RNAi) triggered by short/small interfering RNA (siRNA) was discovered in nematodes and found to function in most living organisms. RNAi has been widely used as a research tool to study gene functions and has shown great potential for the development of novel pest management strategies. RNAi is highly efficient and systemic in coleopterans but highly variable or inefficient in many other insects. Differences in double-stranded RNA (dsRNA) degradation, cellular uptake, inter- and intracellular transports, processing of dsRNA to siRNA, and RNA-induced silencing complex formation influence RNAi efficiency. The basic dsRNA delivery methods include microinjection, feeding, and soaking. To improve dsRNA delivery, various new technologies, including cationic liposome–assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries, have been developed. Major challenges to widespread use of RNAi in insect pest management include variable RNAi efficiency among insects, lack of reliable dsRNA delivery methods, off-target and nontarget effects, and potential development of resistance in insect populations. 
    more » « less
  4. To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed. 
    more » « less
  5. Abstract

    The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of multiomics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVE5 (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.

     
    more » « less