skip to main content


Title: Spray‐induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake
Summary

Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray‐Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non‐pathogenic fungi, and an oomycete pathogen. We observed efficient double‐stranded RNA (dsRNA) uptake in the fungal plant pathogensBotrytis cinerea,Sclerotinia sclerotiorum,Rhizoctonia solani,Aspergillus nigerandVerticillium dahliae, but no uptake inColletotrichum gloeosporioides, and weak uptake in a beneficial fungus,Trichoderma virens. For the oomycete plant pathogen,Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence‐related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen’s RNA uptake efficiency.

 
more » « less
Award ID(s):
1922642
NSF-PAR ID:
10449961
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant Biotechnology Journal
Volume:
19
Issue:
9
ISSN:
1467-7644
Page Range / eLocation ID:
p. 1756-1768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Phosphite (Phi) is used commercially to manage diseases mainly caused by oomycetes, primarily due to its low cost compared with other fungicides and its persistent control of oomycetous pathogens. We explored the use of Phi in controlling the fungal pathogensPuccinia emaculataandPhakopsora pachyrhizi, the causal agents of switchgrass rust and Asian soybean rust, respectively. Phi primes host defenses and efficiently inhibits the growth ofP. emaculata,P. pachyrhiziand several other fungal pathogens tested. To understand these Phi‐mediated effects, a detailed molecular analysis was undertaken in both the host and the pathogen. Transcriptomic studies in switchgrass revealed that Phi activates plant defense signaling as early as 1 h after application by increasing the expression of several cytoplasmic and membrane receptor‐like kinases and defense‐related genes within 24 h of application. Unlike in oomycetes,RNAsequencing ofP. emaculataandP. pachyrhizidid not exhibit Phi‐mediated retardation of cell wall biosynthesis. The genes with reduced expression in either or both rust fungi belonged to functional categories such as ribosomal protein, actin,RNA‐dependentRNApolymerase, and aldehyde dehydrogenase. A fewP. emaculatagenes that had reduced expression upon Phi treatment were further characterized. Application of double‐strandedRNAs specific toP. emaculatagenes encoding glutamateN‐acetyltransferase and cystathionine gamma‐synthase to switchgrass leaves resulted in reduced disease severity uponP. emaculatainoculation, suggesting their role in pathogen survival and/or pathogenesis.

     
    more » « less
  2. ABSTRACT One of the most promising tools for the control of fungal plant diseases is spray‐induced gene silencing (SIGS). In SIGS, small interfering RNA (siRNA) or double‐stranded RNA (dsRNA) targeting essential or virulence‐related pathogen genes are exogenously applied to plants and postharvest products to trigger RNA interference (RNAi) of the targeted genes, inhibiting fungal growth and disease. However, SIGS is limited by the unstable nature of RNA under environmental conditions. The use of layered double hydroxide or clay particles as carriers to deliver biologically active dsRNA, a formulation termed BioClay™, can enhance RNA durability on plants, prolonging its activity against pathogens. Here, we demonstrate that dsRNA delivered as BioClay can prolong protection against Botrytis cinerea , a major plant fungal pathogen, on tomato leaves and fruit and on mature chickpea plants. BioClay increased the protection window from 1 to 3 weeks on tomato leaves and from 5 to 10 days on tomato fruits, when compared with naked dsRNA. In flowering chickpea plants, BioClay provided prolonged protection for up to 4 weeks, covering the critical period of poding, whereas naked dsRNA provided limited protection. This research represents a major step forward for the adoption of SIGS as an eco‐friendly alternative to traditional fungicides. 
    more » « less
  3. Abstract

    Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-associated pathogens in grasslands. We examined the community structure of two pathogenic groups—fungal pathogens and oomycetes—in undisturbed and anthropogenically disturbed grasslands across a natural precipitation and temperature gradient in the Midwestern USA. In undisturbed grasslands, precipitation and temperature gradients were important predictors of pathogen community richness and composition. Oomycete richness increased with precipitation, while fungal pathogen richness depended on an interaction of precipitation and temperature, with precipitation increasing richness most with higher temperatures. Disturbance altered plant pathogen composition and precipitation and temperature had a reduced effect on pathogen richness and composition in disturbed grasslands. Because pathogens can mediate plant community diversity and structure, the sensitivity of pathogens to disturbance and climate suggests that degradation of the pathogen community may mediate loss, or limit restoration of, native plant diversity in disturbed grasslands, and may modify plant community response to climate change.

     
    more » « less
  4. Summary Spray‐induced gene silencing (SIGS) is an innovative and eco‐friendly technology where topical application of pathogen gene‐targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross‐kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea . AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B . cinerea . Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi‐mediated protection against B . cinerea both on pre‐ and post‐harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection. 
    more » « less
  5. Summary

    SUMOylation as one of the protein post‐translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms.Botrytis cinereais a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low‐temperature adaptation are largely unknown in fungi.

    Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection inB. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO‐interacting motif (SIM).

    SUMOylated BcSsb regulates β‐tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono‐ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection.

    Our study uncovers the molecular mechanisms of SUMOylation‐mediated low‐temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low‐temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.

     
    more » « less