skip to main content


Title: Reconstructing mountain glacier equilibrium line altitudes for the Last Glacial Maximum in the western United States
Important information about past climates can be determined from reconstructed equilibrium line altitudes (ELA) of mountain paleoglaciers, specifically the temperature and precipitation accompanying a glacier in equilibrium. Previous reconstructions of Late Pleistocene ELAs of mountain glaciers across the western United States have been used to infer the pattern of temperature and precipitation change across the region, although most of the work was based on presumed ages and limited mapping of glacial deposits and landforms. Cosmogenic nuclide exposure dating of moraines combined with updated mapping and aerial imagery afford an opportunity to revisit the pattern of regional ELAs during multiple episodes of the last Pleistocene glaciation. The goal of this research is to reconstruct ELAs in the same region of previous reconstructions based on glacial sediments that have been dated using cosmogenic nuclide exposure ages. We focus on the large number of glacial valleys with moraines corresponding to the Last Glacial Maximum (LGM; 26.5-19.0 ka). Paleo-ELAs are estimated using the toe to headwall altitude ratio and the accumulation area ratio determined from published glacier reconstructions and existing glacial mapping. Cosmogenic-exposure ages of moraines are compiled from the informal cosmogenic nuclide exposure age database for alpine glacial features (ICE-D Alpine) and represented in a geographic information system along with ELAs for each glacial valley. A reconstructed ELA surface spanning the conterminous western United States is produced using existing algorithms in ArcGIS. Results show reconstructed ELAs generally lower than initially estimated and a larger range of ELAs across the region. In the Sierra Nevada, ELAs increase southeastward, which is consistent with previous estimates, spanning a range from 1800 to 2800 m asl. ELAs rise eastward across the Basin and Range toward the western shore of the area covered by Lake Bonneville, and then decrease eastward toward the Wasatch Mountains. This pattern is inconsistent with previous estimates and may reflect a west-to-east precipitation gradient that differs from modern climate. We discuss this pattern and broader features of the ELA surface of the LGM and later episodes of the last Pleistocene glaciation.  more » « less
Award ID(s):
1948186
NSF-PAR ID:
10232793
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Volume:
53
Issue:
4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Waitt RB, Thackray GD (Ed.)
    Mountain glacier moraine sequences and their chronologies allow us to evaluate the timing and climate conditions that underpin changes in the equilibrium line altitudes (ELAs), which can provide valuable information on the paleoclimatology of understudied regions such as tropical East Africa. However, moraine sequences are inherently discontinuous, and the precise climate conditions that they represent can be ambiguous due to the sensitivity of mountain glaciers to temperature, precipitation, and other environmental variables. Here, we used a two-dimensional (2-D) iceflow and mass-balance model to simulate glacier extents and ELAs in the Rwenzori Mountains in East Africa over the past 31,000 yr (31 k.y.), including the Last Glacial Maximum (LGM), late glacial period, and the Holocene Epoch. We drove the glacier model with two independent, continuous temperature reconstructions to simulate possible glacier length changes through time. Model input paleoclimate values came from branched glycerol dialkyl glycerol tetraether (brGDGT) temperature reconstructions from alpine lakes on Mount Kenya for the last ~31 k.y., and precipitation reconstructions for the LGM came from various East African locations. We then compared the simulated fluctuations with the positions and ages (where known) of the Rwenzori moraines. The simulated glacier extents reached within 1.1 km of the dated LGM moraines in one valley (93% of the full LGM extent) when forced by the brGDGT temperature reconstructions (maximum cooling of 6.1 °C) and a decrease in precipitation (-10% than modern amounts). These simulations suggest that the Rwenzori glaciers required a cooling of at least 6.1 °C to reach the dated LGM moraines. Based on the model output, we predict an age of 12–11 ka for moraines located halfway between the LGM and modern glacier extents. We also predict ice-free conditions in the Rwenzori Mountains for most of the early to middle Holocene, followed by a late Holocene glacier readvance within the last 2000 yr. 
    more » « less
  2. Abstract

    Well-dated records of alpine glacier fluctuations provide important insights into the temporal and spatial structure of climate variability. Cirque moraine records from the western United States have historically been interpreted as a resurgence of alpine glaciation in the middle-to-late Holocene (i.e., Neoglaciation), but these moraines remain poorly dated because of limited numerical age constraints at most locations. Here we present 13010Be ages on 19 moraines deposited by 14 cirque glaciers across this region that have been interpreted as recording these Neoglacial advances. Our10Be chronology indicates instead that these moraines were deposited during the latest Pleistocene to earliest Holocene, with several as old as 14–15ka. Our results thus show that glaciers retreated from their Last Glacial Maximum (LGM) extent into cirques relatively early during the last deglaciation, experienced small fluctuations during the Bølling–Allerød–Younger Dryas interval, and remained within the maximum limit of the Little Ice Age (LIA) advance of the last several centuries throughout most of the Holocene. Climate modeling suggests that increasing local summer insolation and greenhouse gases were the primary controls on early glacier retreat from their LGM positions. We then infer that subsequent intrinsic climate variability and Younger Dryas cooling caused minor fluctuations during the latest Pleistocene, while the LIA advance represents the culmination of a cooling trend through the Holocene in response to decreasing boreal summer insolation.

     
    more » « less
  3. Abstract

    Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combiningin situ10Be and26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2during pre‐LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in‐between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non‐erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.

     
    more » « less
  4. Richard B. Waitt ; Glenn D. Thackray ; Alan R. Gillespie (Ed.)
    The northward retreat history of the Laurentide ice sheet through the lowlands of the northeastern United States during the last deglaciation is well constrained, but its vertical thinning history is less well known because of the lack of direct constraints on ice thickness through time and space. In addition, the highest elevations in New England are characterized by gently sloping upland surfaces and weathered block fields, features with an uncertain history. To better constrain ice-sheet history in this area and its relationship to alpine geomorphology, we present 20 new 10Be and seven in situ 14C cosmogenic nuclide measurements along an elevation transect at Mount Washington, New Hampshire, the highest mountain in the northeastern United States (1917 m above sea level [a.s.l.]). Our results suggest substantially different exposure and erosion histories on the upper and lower parts of the mountain. Above 1600 m a.s.l., 10Be and in situ 14C measurements are consistent with upper reaches of the mountain deglaciating by 18 ka. However, some 10Be ages are up to several times greater than the age of the last deglaciation, consistent with weakly erosive, cold-based ice that did not deeply erode preglacial surfaces. Below 1600 m a.s.l., 10Be ages are indistinguishable over a nearly 900 m range in elevation and imply rapid ice-surface lowering ca. 14.1 ± 1.1 ka (1 standard deviation; n = 9). This shift from slow thinning early in the deglaciation on the upper part of the mountain to abrupt thinning across the lower elevations coincided with accelerated ice-margin retreat through the region recorded by Connecticut River valley varve records during the Bølling interstadial. The Mount Washington cosmogenic nuclide vertical transect and the Connecticut River valley varve record, along with other New England cosmogenic nuclide records, suggest rapid ice-volume loss in the interior northeastern United States in response to Bølling warming. 
    more » « less
  5. Abstract

    The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of interspecies divergence, the accumulation of intra‐species (i.e., population level) genetic divergence across the mountain‐valley landscape in this region has received less attention. We used genome‐wide restriction site‐associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations ofThitarodes shambalaensis(Lepidoptera: Hepialidae), the host moth of parasiticOphiocordyceps sinensis(Hypocreales: Ophiocordycipitaceae) or caterpillar fungus” endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations ofT.shambalaensis. We found that moth populations separated by less than 10 km exhibited valley‐based population genetic clustering and isolation‐by‐distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML, 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 m apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGMLglaciers. These results reveal the fine‐scale, long‐term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.

     
    more » « less