From a handle-theoretic perspective, the simplest contractible 4-manifolds, other than the 4-ball, are Mazur manifolds. We produce the first pairs of Mazur manifolds that are homeomorphic but not diffeomorphic. Our diffeomorphism obstruction comes from our proof that the knot Floer homology concordance invariant ν is an invariant of the trace of a knot, i.e. the smooth 4-manifold obtained by attaching a 2-handle to the 4-ball along K. This provides a computable, integer-valued diffeomorphism invariant that is effective at distinguishing exotic smooth structures on knot traces and other simple 4-manifolds, including when other adjunction-type obstructions are ineffective. We also show that the concordance invariants τ and ϵ are not knot trace invariants. As a corollary to the existence of exotic Mazur manifolds, we produce integer homology 3-spheres admitting two distinct surgeries to $$S^1 \times S^2$$, resolving a question from Problem 1.16 in Kirby's list.
more »
« less
A slicing obstruction from the 10/8+4 theorem
Using the 10/8 + 4 theorem of Hopkins, Lin, Shi, and Xu, we derive a smooth slicing obstruction for knots in the three-sphere using a spin 4-manifold whose boundary is 0–surgery on a knot. This improves upon the slicing obstruction bound by Vafaee and Donald that relies on Furuta’s 10/8 theorem. We give an example where our obstruction is able to detect the smooth non-sliceness of a knot by using a spin 4-manifold for which the Donald-Vafaee slice obstruction fails.
more »
« less
- Award ID(s):
- 1606451
- PAR ID:
- 10232803
- Editor(s):
- Wood, David R.; de Gier, Jan; Praeger, Cheryl E.; Tao, Terence
- Date Published:
- Journal Name:
- MATRIX book series
- Volume:
- 4
- ISSN:
- 2523-3041
- Page Range / eLocation ID:
- 167-172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we use the [Formula: see text]-spin theorem to show that the Davis hyperbolic 4-manifold admits harmonic spinors. This is the first example of a closed hyperbolic [Formula: see text]-manifold that admits harmonic spinors. We also explicitly describe the spinor bundle of a spin hyperbolic 2- or 4-manifold and show how to calculated the subtle sign terms in the [Formula: see text]-spin theorem for an isometry, with isolated fixed points, of a closed spin hyperbolic 2- or 4-manifold.more » « less
-
null (Ed.)A non-degenerate differential 2-form on an even dimensional manifold M^2n is called an almost-symplectic structure. A necessary condition for the existence of an almost-symplectic structure is that all odd-dimensional Stiefel-Whitney classes of M should vanish. In this paper, we prove that all odd-dimensional Stiefel-Whitney classes of a smooth, closed, connected, orientable 8-manifold with spin structure vanish. We also study the almost-symplectic structures on certain classes of Spin(7)-manifolds.more » « less
-
Abstract The trace of the $$n$$ -framed surgery on a knot in $$S^{3}$$ is a 4-manifold homotopy equivalent to the 2-sphere. We characterise when a generator of the second homotopy group of such a manifold can be realised by a locally flat embedded $$2$$ -sphere whose complement has abelian fundamental group. Our characterisation is in terms of classical and computable $$3$$ -dimensional knot invariants. For each $$n$$ , this provides conditions that imply a knot is topologically $$n$$ -shake slice, directly analogous to the result of Freedman and Quinn that a knot with trivial Alexander polynomial is topologically slice.more » « less
-
Suppose is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension , it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.more » « less
An official website of the United States government

