skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolutionary rescue via transgenerational plasticity: Evidence and implications for conservation
When a population experiences severe stress from a changing environment, evolution by natural selection can prevent its extinction, a process dubbed “evolutionary rescue.” However, evolution may be unable to track the sort of rapid environmental change being experienced by many modern-day populations. A potential solution is for organisms to respond to environmental change through phenotypic plasticity, which can buffer populations against change and thereby buy time for evolutionary rescue. In this review, we examine whether this process extends to situations in which the environmentally induced response is passed to offspring. As we describe, theoretical and empirical studies suggest that such “transgenerational plasticity” can increase population persistence. We discuss the implications of this process for conservation biology, outline potential limitations, and describe some applications. Generally, transgenerational plasticity may be effective at buying time for evolutionary rescue to occur.01 February 2021  more » « less
Award ID(s):
1753865
PAR ID:
10232935
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Evolution & Development
ISSN:
1520-541X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Evolutionary adaptation can allow a population to persist in the face of a new environmental challenge. With many populations now threatened by environmental change, it is important to understand whether this process of evolutionary rescue is feasible under natural conditions, yet work on this topic has been largely theoretical. We used unique long-term data to parameterize deterministic and stochastic models of the contribution of 1 trait to evolutionary rescue using field estimates for the subalpine plant Ipomopsis aggregata and hybrids with its close relative I. tenuituba. In the absence of evolution or plasticity, the 2 studied populations are projected to go locally extinct due to earlier snowmelt under climate change, which imposes drought conditions. Phenotypic selection on specific leaf area (SLA) was estimated in 12 years and multiple populations. Those data on selection and its environmental sensitivity to annual snowmelt timing in the spring were combined with previous data on heritability of the trait, phenotypic plasticity of the trait, and the impact of snowmelt timing on mean absolute fitness. Selection favored low values of SLA (thicker leaves). The evolutionary response to selection on that single trait was insufficient to allow evolutionary rescue by itself, but in combination with phenotypic plasticity it promoted evolutionary rescue in 1 of the 2 populations. The number of years until population size would stop declining and begin to rise again was heavily dependent upon stochastic environmental changes in snowmelt timing around the trend line. Our study illustrates how field estimates of quantitative genetic parameters can be used to predict the likelihood of evolutionary rescue. Although a complete set of parameter estimates are generally unavailable, it may also be possible to predict the general likelihood of evolutionary rescue based on published ranges for phenotypic selection and heritability and the extent to which early snowmelt impacts fitness. 
    more » « less
  2. Populations declining toward extinction can persist via genetic adaptation in a process called evolutionary rescue. Predicting evolutionary rescue has applications ranging from conservation biology to medicine, but requires understanding and integrating the multiple effects of a stressful environmental change on population processes. Here we derive a simple expression for how generation time, a key determinant of the rate of evolution, varies with population size during evolutionary rescue. Change in generation time is quantitatively predicted by comparing how intraspecific competition and the source of maladaptation each affect the rates of births and deaths in the population. Depending on the difference between two parameters quantifying these effects, the model predicts that populations may experience substantial changes in their rate of adaptation in both positive and negative directions, or adapt consistently despite severe stress. These predictions were then tested by comparison to the results of individual-based simulations of evolutionary rescue, which validated that the tolerable rate of environmental change varied considerably as described by analytical results. We discuss how these results inform efforts to understand wildlife disease and adaptation to climate change, evolution in managed populations and treatment resistance in pathogens. 
    more » « less
  3. null (Ed.)
    The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology—evolutionary rescue models—can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti -transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change. 
    more » « less
  4. Dr Andrea E. A. Stephens (Ed.)
    To forecast extinction risks of natural populations under climate change and direct human impacts, an integrative understanding of both phenotypic plasticity and adaptive evolution is essential. To date, the evidence for whether, when, and how much plasticity facilitates adaptive responses in changing environments is contradictory. We argue that explicitly considering three key environmental change components – rate of change, variance, and temporal autocorrelation – affords a unifying framework of the impact of plasticity on adaptive evolution. These environmental components each distinctively effect evolutionary and ecological processes underpinning population viability. Using this framework, we develop expectations regarding the interplay between plasticity and adaptive evolution in natural populations. This framework has the potential to improve predictions of population viability in a changing world. 
    more » « less
  5. Following severe environmental change that reduces mean population fitness below replacement, populations must adapt to avoid eventual extinction, a process called evolutionary rescue. Models of evolutionary rescue demonstrate that initial size, genetic variation and degree of maladaptation influence population fates. However, many models feature populations that grow without negative density dependence or with constant genetic diversity despite precipitous population decline, assumptions likely to be violated in conservation settings. We examined the simultaneous influences of density-dependent growth and erosion of genetic diversity on populations adapting to novel environmental change using stochastic, individual-based simulations. Density dependence decreased the probability of rescue and increased the probability of extinction, especially in large and initially well-adapted populations that previously have been predicted to be at low risk. Increased extinction occurred shortly following environmental change, as populations under density dependence experienced more rapid decline and reached smaller sizes. Populations that experienced evolutionary rescue lost genetic diversity through drift and adaptation, particularly under density dependence. Populations that declined to extinction entered an extinction vortex, where small size increased drift, loss of genetic diversity and the fixation of maladaptive alleles, hindered adaptation and kept populations at small densities where they were vulnerable to extinction via demographic stochasticity. 
    more » « less