skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A trust model for spreading gossip in social networks: a multi-type bootstrap percolation model
We introduce here a multi-type bootstrap percolation model, which we call T -Bootstrap Percolation ( T -BP), and apply it to study information propagation in social networks. In this model, a social network is represented by a graph G whose vertices have different labels corresponding to the type of role the person plays in the network (e.g. a student, an educator etc.). Once an initial set of vertices of G is randomly selected to be carrying a gossip (e.g. to be infected), the gossip propagates to a new vertex provided it is transmitted by a minimum threshold of vertices with different labels. By considering random graphs, which have been shown to closely represent social networks, we study different properties of the T -BP model through numerical simulations, and describe its implications when applied to rumour spread, fake news and marketing strategies.  more » « less
Award ID(s):
1749013 1509693
PAR ID:
10232951
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
476
Issue:
2235
ISSN:
1364-5021
Page Range / eLocation ID:
20190826
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is dedicated to the study of the interaction between dynamical systems and percolation models, with views towards the study of viral infections whose virus mutate with time. Recall that r-bootstrap percolation describes a deterministic process where vertices of a graph are infected once r neighbors of it are infected. We generalize this by introducing F(t)-bootstrap percolation, a time-dependent process where the number of neighbouring vertices which need to be infected for a disease to be transmitted is determined by a percolation function F(t) at each time t. After studying some of the basic properties of the model, we consider smallest percolating sets and construct a polynomial-timed algorithm to nd one smallest minimal percolating set on nite trees for certain F(t)-bootstrap percolation models. 
    more » « less
  2. Social actors are often embedded in multiple social networks, and there is a growing interest in studying social systems from a multiplex network perspective. In this paper, we propose a mixed-effects model for cross-sectional multiplex network data that assumes dyads to be conditionally independent. Building on the uniplex p2 model, we incorporate dependencies between different network layers via cross-layer dyadic effects and through the covariance structure among the actor random effects. These cross-layer effects model the tendencies for ties between two actors and the ties to and from the same actor to be dependent across different relational dimensions. The model can also study the effect of actor and dyad covariates. As simulation-based goodness-of-fit analyses are common practice in applied network studies, we here propose goodness-of-fit measures for multiplex network analyses. We evaluate our choice of priors and the computational faithfulness and inferential properties of the proposed method through simulation. We illustrate the utility of the multiplex p2 model in a replication study of a toxic chemical policy network. An original study that reflects on gossip as perceived by gossip senders and gossip targets, and their differences in perspectives, based on data from 34 Hungarian elementary school classes, highlights the applicability of the proposed method. The proposed methodology is available in the R package multip2. 
    more » « less
  3. Bootstrap percolation is a process defined on a graph which begins with an initial set of infected vertices. In each subsequent round, an uninfected vertex becomes infected if it is adjacent to at least r previously infected vertices. If an initially infected set of vertices, A0, begins a process in which every vertex of the graph eventually becomes infected, then we say that A0 percolates. In this paper we investigate bootstrap percolation as it relates to graph distance and connectivity. We find a sufficient condition for the existence of cardinality 2 percolating sets in diameter 2 graphs when r = 2. We also investigate connections between connectivity and bootstrap percolation and lower and upper bounds on the number of rounds to percolation in terms of invariants related to graph distance. 
    more » « less
  4. This paper proposes a new distribution-free model of social networks. The definitions are motivated by one of the most universal signatures of social networks, triadic closure—the property that pairs of vertices with common neighbors tend to be adjacent. Our most basic definition is that of a c-closed graph, where for every pair of vertices u, v with at least c common neighbors, u and v are adjacent. We study the classic problem of enumerating all maximal cliques, an important task in social network analysis. We prove that this problem is fixed-parameter tractable with respect to c on c-closed graphs. Our results carry over to weakly c-closed graphs, which only require a vertex deletion ordering that avoids pairs of non-adjacent vertices with c common neighbors. Numerical experiments show that well-studied social networks with thousands of vertices tend to be weakly c-closed for modest values of c. 
    more » « less
  5. Abstract Many statistical models for networks overlook the fact that most real-world networks are formed through a growth process. To address this, we introduce the Preferential Attachment Plus Erdős–Rényi model, where we let a random network G be the union of a preferential attachment (PA) tree T and additional Erdős–Rényi (ER) random edges. The PA tree captures the underlying growth process of a network where vertices/edges are added sequentially, while the ER component can be regarded as noise. Given only one snapshot of the final network G, we study the problem of constructing confidence sets for the root node of the unobserved growth process; the root node can be patient zero in an infection network or the source of fake news in a social network. We propose inference algorithms based on Gibbs sampling that scales to networks with millions of nodes and provide theoretical analysis showing that the size of the confidence set is small if the noise level of the ER edges is not too large. We also propose variations of the model in which multiple growth processes occur simultaneously, reflecting the growth of multiple communities; we use these models to provide a new approach to community detection. 
    more » « less