skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Root and community inference on the latent growth process of a network
Abstract Many statistical models for networks overlook the fact that most real-world networks are formed through a growth process. To address this, we introduce the Preferential Attachment Plus Erdős–Rényi model, where we let a random network G be the union of a preferential attachment (PA) tree T and additional Erdős–Rényi (ER) random edges. The PA tree captures the underlying growth process of a network where vertices/edges are added sequentially, while the ER component can be regarded as noise. Given only one snapshot of the final network G, we study the problem of constructing confidence sets for the root node of the unobserved growth process; the root node can be patient zero in an infection network or the source of fake news in a social network. We propose inference algorithms based on Gibbs sampling that scales to networks with millions of nodes and provide theoretical analysis showing that the size of the confidence set is small if the noise level of the ER edges is not too large. We also propose variations of the model in which multiple growth processes occur simultaneously, reflecting the growth of multiple communities; we use these models to provide a new approach to community detection.  more » « less
Award ID(s):
2113671
PAR ID:
10645287
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Publishing
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
86
Issue:
4
ISSN:
1369-7412
Page Range / eLocation ID:
825 to 865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantifying the differences between networks is a challenging and ever-present problem in network science. In recent years, a multitude of diverse, ad hoc solutions to this problem have been introduced. Here, we propose that simple and well-understood ensembles of random networks—such as Erdős–Rényi graphs, random geometric graphs, Watts–Strogatz graphs, the configuration model and preferential attachment networks—are natural benchmarks for network comparison methods. Moreover, we show that the expected distance between two networks independently sampled from a generative model is a useful property that encapsulates many key features of that model. To illustrate our results, we calculate this within-ensemble graph distance and related quantities for classic network models (and several parameterizations thereof) using 20 distance measures commonly used to compare graphs. The within-ensemble graph distance provides a new framework for developers of graph distances to better understand their creations and for practitioners to better choose an appropriate tool for their particular task. 
    more » « less
  2. Abstract The spread of infectious disease in a human community or the proliferation of fake news on social media can be modelled as a randomly growing tree-shaped graph. The history of the random growth process is often unobserved but contains important information such as the source of the infection. We consider the problem of statistical inference on aspects of the latent history using only a single snapshot of the final tree. Our approach is to apply random labels to the observed unlabelled tree and analyse the resulting distribution of the growth process, conditional on the final outcome. We show that this conditional distribution is tractable under a shape exchangeability condition, which we introduce here, and that this condition is satisfied for many popular models for randomly growing trees such as uniform attachment, linear preferential attachment and uniform attachment on a D-regular tree. For inference of the root under shape exchangeability, we propose O(n log n) time algorithms for constructing confidence sets with valid frequentist coverage as well as bounds on the expected size of the confidence sets. We also provide efficient sampling algorithms which extend our methods to a wide class of inference problems. 
    more » « less
  3. Preferential attachment (PA) network models have a wide range of applications in various scientific disciplines. Efficient generation of large-scale PA networks helps uncover their structural properties and facilitate the development of associated analytical methodologies. Existing software packages only provide limited functions for this purpose with restricted configurations and efficiency. We present a generic, user-friendly implementation of weighted, directed PA network generation with R package wdnet. The core algorithm is based on an efficient binary tree approach. The package further allows adding multiple edges at a time, heterogeneous reciprocal edges, and user-specified preference functions. The engine under the hood is implemented in C++. Usages of the package are illustrated with detailed explanation. A benchmark study shows that wdnet is efficient for generating general PA networks not available in other packages. In restricted settings that can be handled by existing packages, wdnet provides comparable efficiency. 
    more » « less
  4. Consider a network of agents that all want to guess the correct value of some ground truth state. In a sequential order, each agent makes its decision using a single private signal which has a constant probability of error, as well as observations of actions from its network neighbors earlier in the order. We are interested in enabling network-wide asymptotic truth learning – that in a network of n agents, almost all agents make a correct prediction with probability approaching one as n goes to infinity. In this paper we study both random orderings and carefully crafted decision orders with respect to the graph topology as well as sufficient or necessary conditions for a graph to support such a good ordering. We first show that on a sparse graph of average constant degree with a random ordering asymptotic truth learning does not happen. We then show a rather modest sufficient condition to enable asymptotic truth learning. With the help of this condition we characterize graphs generated from the Erdös Rényi model and preferential attachment model. In an Erdös Rényi graph, unless the graph is super sparse (with O(n) edges) or super dense (nearly a complete graph), there exists a decision ordering that supports asymptotic truth learning. Similarly, any preferential attachment network with a constant number of edges per node can achieve asymptotic truth learning under a carefully designed ordering but not under either a random ordering nor the arrival order. We also evaluated a variant of the decision ordering on different network topologies and demonstrated clear effectiveness in improving truth learning over random orderings. 
    more » « less
  5. A graph $$G$$ percolates in the $$K_{r,s}$$-bootstrap process if we can add all missing edges of $$G$$ in some order such that each edge creates a new copy of $$K_{r,s}$$, where $$K_{r,s}$$ is the complete bipartite graph. We study $$K_{r,s}$$-bootstrap percolation on the Erdős-Rényi random graph, and determine the percolation threshold for balanced $$K_{r,s}$$ up to a logarithmic factor. This partially answers a question raised by Balogh, Bollobás, and Morris. We also establish a general lower bound of the percolation threshold for all $$K_{r,s}$$, with $$r\geq s \geq 3$$. 
    more » « less