skip to main content


Title: Object Allocation Pattern as an Indicator for Maliciousness - An Exploratory Analysis
Traditionally, Android malware is analyzed using static or dynamic analysis. Although static techniques are often fast; however, they cannot be applied to classify obfuscated samples or malware with a dynamic payload. In comparison, the dynamic approach can examine obfuscated variants but often incurs significant runtime overhead when collecting every important malware behavioral data. This paper conducts an exploratory analysis of memory forensics as an alternative technique for extracting feature vectors for an Android malware classifier. We utilized the reconstructed per-process object allocation network to identify distinguishable patterns in malware and benign application. Our evaluation results indicate the network structural features in the malware category are unique compared to the benign dataset, and thus features extracted from the remnant of in-memory allocated objects can be utilized for robust Android malware classification algorithm.  more » « less
Award ID(s):
1850054
NSF-PAR ID:
10233016
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM CODASPY 2021
Page Range / eLocation ID:
313 to 315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Android applications rely heavily on strings for sensitive operations like reflection, access to system resources, URL connections, database access, among others. Thus, insight into application behavior can be gained through not only an analysis of what strings an application creates but also the structure of the computation used to create theses strings, and in what manner are these strings used. In this paper we introduce a static analysis of Android applications to discover strings, how they are created, and their usage. The output of our static analysis contains all of this information in the form of a graph which we call a string computation. We leverage the results to classify individual application behavior with respect to malicious or benign intent. Unlike previous work that has focused only on extraction of string values, our approach leverages the structure of the computation used to generate string values as features to perform classification of Android applications. That is, we use none of the static analysis computed string values, rather using only the graph structures of created strings to do classification of an arbitrary Android application as malware or benign. Our results show that leveraging string computation structures as features can yield precision and recall rates as high as 97% on modern malware. We also provide baseline results against other malware detection tools and techniques to classify the same corpus of applications. 
    more » « less
  2. The phenomenal growth in use of android devices in the recent years has also been accompanied by the rise of android malware. This reality warrants development of tools and techniques to analyze android apps in large scale for security vetting. Most of the state-of-the-art vetting tools are either based on static analysis or on dynamic analysis. Static analysis has limited success if the malware app utilizes sophisticated evading tricks. Dynamic analysis on the other hand may not find all the code execution paths, which let some malware apps remain undetected. Moreover, the existing static and dynamic analysis vetting techniques require extensive human interaction. To ad- dress the above issues, we design a deep learning based hybrid analysis technique, which combines the complementary strengths of each analysis paradigm to attain better accuracy. Moreover, automated feature engineering capability of the deep learning framework addresses the human interaction issue. In particular, using lightweight static and dynamic analysis procedure, we obtain multiple artifacts, and with these artifacts we train the deep learner to create independent models, and then combine them to build a hybrid classifier to obtain the final vetting decision (malicious apps vs. benign apps). The experiments show that our best deep learning model with hybrid analysis achieves an area under the precision-recall curve (AUC) of 0.9998. In this paper, we also present a comparative study of performance measures of the various variants of the deep learning framework. Additional experiments indicate that our vetting system is fairly robust against imbalanced data and is scalable. 
    more » « less
  3. Ko, Hanseok (Ed.)
    Malware represents a significant security concern in today’s digital landscape, as it can destroy or disable operating systems, steal sensitive user information, and occupy valuable disk space. However, current malware detection methods, such as static-based and dynamic-based approaches, struggle to identify newly developed ("zero-day") malware and are limited by customized virtual machine (VM) environments. To overcome these limitations, we propose a novel malware detection approach that leverages deep learning, mathematical techniques, and network science. Our approach focuses on static and dynamic analysis and utilizes the Low-Level Virtual Machine (LLVM) to profile applications within a complex network. The generated network topologies are input into the GraphSAGE architecture to efficiently distinguish between benign and malicious software applications, with the operation names denoted as node features. Importantly, the GraphSAGE models analyze the network’s topological geometry to make predictions, enabling them to detect state-of-the-art malware and prevent potential damage during execution in a VM. To evaluate our approach, we conduct a study on a dataset comprising source code from 24,376 applications, specifically written in C/C++, sourced directly from widely-recognized malware and various types of benign software. The results show a high detection performance with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 99.85%. Our approach marks a substantial improvement in malware detection, providing a notably more accurate and efficient solution when compared to current state-of-the-art malware detection methods. The code is released at https://github.com/HantangZhang/MGN. 
    more » « less
  4. Kim, JH. ; Singh, M. ; Khan, J. ; Tiwary, U.S. ; Sur, M. ; Singh, D. (Ed.)
    Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user. 
    more » « less
  5. null (Ed.)
    Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset. 1 We perform an extensive study on other publicly available datasets to show our approach’s effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score. 
    more » « less