skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shell-model studies of the astrophysical rp-process reactions 34 S(p,γ) 35 Cl and 34g,m Cl(p,γ) 35 Ar
Award ID(s):
1913554
PAR ID:
10233058
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
1643
ISSN:
1742-6588
Page Range / eLocation ID:
012064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.An accurate28P(p,γ)29S reaction rate is crucial to defining the nucleosynthesis products of explosive hydrogen burning in ONe novae. Using the recently released nuclear mass of29S, together with a shell model and a direct capture calculation, we reanalyzed the28P(p,γ)29S thermonuclear reaction rate and its astrophysical implication. Aims.We focus on improving the astrophysical rate for28P(p,γ)29S based on the newest nuclear mass data. Our goal is to explore the impact of the new rate and associated uncertainties on the nova nucleosynthesis. Methods.We evaluated this reaction rate via the sum of the isolated resonance contribution instead of the previously used Hauser-Feshbach statistical model. The corresponding rate uncertainty at different energies was derived using a Monte Carlo method. Nova nucleosynthesis is computed with the 1D hydrodynamic code SHIVA. Results.The contribution from the capture on the first excited state at 105.64 keV in28P is taken into account for the first time. We find that the capture rate on the first excited state in28P is up to more than 12 times larger than the ground-state capture rate in the temperature region of 2.5 × 107K to 4 × 108K, resulting in the total28P(p,γ)29S reaction rate being enhanced by a factor of up to 1.4 at ~1 × 109K. In addition, the rate uncertainty has been quantified for the first time. It is found that the new rate is smaller than the previous statistical model rates, but it still agrees with them within uncertainties for nova temperatures. The statistical model appears to be roughly valid for the rate estimation of this reaction in the nova nucleosynthesis scenario. Using the 1D hydrodynamic code SHIVA, we performed the nucleosynthesis calculations in a nova explosion to investigate the impact of the new rates of28P(p,γ)29S. Our calculations show that the nova abundance pattern is only marginally affected if we use our new rates with respect to the same simulations but statistical model rates. Finally, the isotopes whose abundance is most influenced by the present28P(p,γ)29S uncertainty are28Si,33,34S,35,37Cl, and36Ar, with relative abundance changes at the level of only 3% to 4%. 
    more » « less
  2. In the Mn3O4electrode, chloride ions are reversibly converted into atomic chlorine species. Trapped Zn2+cations aid in stabilizing these chlorine atoms in polychloride species. 
    more » « less