skip to main content


Title: The peculiar size and temperature dependence of water diffusion in carbon nanotubes studied with 2D NMR diffusion–relaxation D  – T 2eff spectroscopy
Award ID(s):
2019745
NSF-PAR ID:
10233278
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biomicrofluidics
Volume:
14
Issue:
3
ISSN:
1932-1058
Page Range / eLocation ID:
034114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study presents a new material, “HxCrS2” (denotes approximate composition) formed by proton‐exchange of NaCrS2which has a measured capacity of 728 mAh g−1with significant improvements to capacity retention, sustaining over 700 mAh g−1during cycling experiments. This is the highest reported capacity for a transition metal sulfide electrode and outperforms the most promising proposed sodium anodes to date. HxCrS2exhibits a biphasic structure featuring alternating crystalline and amorphous lamella on the scale of a few nanometers. This unique structural motif enables reversible access to Cr redox in the material resulting in higher capacities than seen in the parent structure which features only S redox. Pretreatment by proton‐exchange offers a route to materials such as HxCrS2which provide fast diffusion and high capacities for sodium‐ion batteries.

     
    more » « less
  2. Abstract

    Atomic oxygen (O) in the mesosphere and lower thermosphere (MLT) results from a balance between production via photo‐dissociation in the lower thermosphere and chemical loss by recombination in the upper mesosphere. The transport of O downward from the lower thermosphere into the mesosphere is preferentially driven by the eddy diffusion process that results from dissipating gravity waves and instabilities. The motivation here is to probe the intra‐annual variability of the eddy diffusion coefficient (kzz) and eddy velocity in the MLT based on the climatology of the region, initially accomplished by Garcia and Solomon (1985,https://doi.org/10.1029/JD090iD02p03850). In the current study, the intra‐annual cycle was divided into 26 two‐week periods for each of three zones: the northern hemisphere (NH), southern hemisphere (SH), and equatorial (EQ). Both 16 years of SABER (2002–2018) and 10 years of SCIAMACHY (2002–2012) O density measurements, along with NRLMSIS®2.0 were used for calculation of atomic oxygen eddy diffusion velocities and fluxes. Our prominent findings include a dominant annual oscillation below 87 km in the NH and SH zones, with a factor of 3–4 variation between winter and summer at 83 km, and a dominant semiannual oscillation at all altitudes in the EQ zone. The measured global average kzzat 96 km lacks the intra‐annual variability of upper atmosphere density data deduced by Qian et al. (2009,https://doi.org/10.1029/2008JA013643). The very large seasonal (and hemispherical) variations in kzzand O densities are important to separate and isolate in satellite analysis and to incorporate in MLT models.

     
    more » « less
  3. Abstract

    Some polymers and oxide glasses exhibit unusual diffusion of liquid or gas, with the depth of diffusion exhibiting a linear increase with time, instead of normal square root of time dependence. There have been many models, but very few experimental data that can help clarify the cause of the phenomenon's existence in glass. Residual stress in sodium trisilicate glass (Na2O–3SiO2) samples was characterized following Case II water diffusion at 80°C in a saturated water vapor environment. The surface‐swelled layer of the glass was removed by dissolving it in water, and birefringence of the newly revealed surface layer was measured. The presence of a constant negative tensile stress gradient was revealed by indicating that Case II diffusion in sodium trisilicate glass originates from this stress gradient, which overwhelms the more typical Fick's law concentration‐dependent flux.

     
    more » « less