skip to main content


Title: Inactivation and sensitization of Pseudomonas aeruginosa by microplasma jet array for treating otitis media
Abstract

Otitis media (OM), known as a middle ear infection, is the leading cause of antibiotic prescriptions for children. With wide-spread use of antibiotics in OM, resistance to antibiotics continues to decrease the efficacy of the treatment. Furthermore, as the presence of a middle ear biofilm has contributed to this reduced susceptibility to antimicrobials, effective interventions are necessary. A miniaturized 3D-printed microplasma jet array has been developed to inactivatePseudomonas aeruginosa, a common bacterial strain associated with OM. The experiments demonstrate the disruption of planktonic and biofilmP. aeruginosaby long-lived molecular species generated by microplasma, as well as the synergy of combining microplasma treatment with antibiotic therapy. In addition, a middle ear phantom model was developed with an excised rat eardrum to investigate the antimicrobial effects of microplasma on bacteria located behind the eardrum, as in a patient-relevant setup. These results suggest the potential for microplasma as a new treatment paradigm for OM.

 
more » « less
Award ID(s):
1855609
NSF-PAR ID:
10233497
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Biofilms and Microbiomes
Volume:
7
Issue:
1
ISSN:
2055-5008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pseudomonas aeruginosa(P. aeruginosa) is a phenazine-producing pathogen recognized for its biofilm-mediated antibiotic resistance, showing up to 1000 times higher resistance compared to planktonic cells. In particular, it is shown that a phenazine called pyocyanin promotes antibiotic tolerance inP. aeruginosacultures by upregulating efflux pumps and inducing biofilm formation. Therefore, real-time study of phenazine production in response to antibiotics could offer new insights for early detection and management of the infection. Toward this goal, this work demonstrates real-time monitoring ofP. aeruginosacolony biofilms challenged by antibiotics using electrochemical sensors based on direct laser functionalization of laser induced graphene (LIG) with gold (Au) nanostructures. Specifically, two routes for functionalization of the LIG electrodes with Au-containing solutions are studied: electroless deposition and direct laser functionalization (E-Au/LIG and L-Au/LIG, respectively). While both methods show comparable sensitivity (1.276 vs 1.205μAμM−1), E-Au/LIG has bactericidal effects which make it unsuitable as a sensor material. The effect of antibiotics (gentamicin as a model drug) on the production rate of phenazines before (i.e., in planktonic phase) or after biofilm formation is studied. The sensor data confirms that theP. aeruginosabiofilms are at least 100 times more tolerant to the antibiotic compared to planktonic cells. The biosensors are developed using a scalable and facile manufacturing approach and may pave the way toward simple-to-use antibiotic susceptibility testing devices for early infection diagnosis and real-time study of antibiotic resistance evolution.

     
    more » « less
  2. Pseudomonas aeruginosais an opportunistic pathogen that forms antibiotic-resistant biofilms, which facilitate chronic infections in immunocompromised hosts. We have previously shown thatP. aeruginosasecretes outer-membrane vesicles that deliver a small RNA to human airway epithelial cells (AECs), in which it suppresses the innate immune response. Here, we demonstrate that interdomain communication through small RNA–containing membrane vesicles is bidirectional and that microRNAs (miRNAs) in extracellular vesicles (EVs) secreted by human AECs regulate protein expression, antibiotic sensitivity, and biofilm formation byP. aeruginosa. Specifically, human EVs deliver miRNA let-7b-5p toP. aeruginosa, which systematically decreases the abundance of proteins essential for biofilm formation, including PpkA and ClpV1-3, and increases the ability of beta-lactam antibiotics to reduce biofilm formation by targeting the beta-lactamase AmpC. Let-7b-5p is bioinformatically predicted to target not only PpkA, ClpV1, and AmpC inP. aeruginosabut also the corresponding orthologs inBurkholderia cenocepacia, another notorious opportunistic lung pathogen, suggesting that the ability of let-7b-5p to reduce biofilm formation and increase beta-lactam sensitivity is not limited toP. aeruginosa. Here, we provide direct evidence for transfer of miRNAs in EVs secreted by eukaryotic cells to a prokaryote, resulting in subsequent phenotypic alterations in the prokaryote as a result of this interdomain communication. Since let-7–family miRNAs are in clinical trials to reduce inflammation and because chronicP. aeruginosalung infections are associated with a hyperinflammatory state, treatment with let-7b-5p and a beta-lactam antibiotic in nanoparticles or EVs may benefit patients with antibiotic-resistantP. aeruginosainfections.

     
    more » « less
  3. Abstract

    Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specificallyPseudomonas aeruginosabiofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo‐antimicrobial peptide Gaduscidin‐1 (Gad‐1) eradicates establishedP. aeruginosabiofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad‐1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad‐1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.

     
    more » « less
  4. Implantable tubes, shunts, and other medical conduits are crucial for treating a wide range of conditions from ears and eyes to brain and liver but often impose serious risks of device infection, obstruction, migration, unreliable function, and tissue damage. Efforts to alleviate these complications remain at an impasse because of fundamentally conflicting design requirements: Millimeter-scale size is required to minimize invasiveness but exacerbates occlusion and malfunction. Here, we present a rational design strategy that reconciles these trade-offs in an implantable tube that is even smaller than the current standard of care. Using tympanostomy tubes (ear tubes) as an exemplary case, we developed an iterative screening algorithm and show how unique curved lumen geometries of the liquid-infused conduit can be designed to co-optimize drug delivery, effusion drainage, water resistance, and biocontamination/ingrowth prevention in a single subcapillary–length-scale device. Through extensive in vitro studies, we demonstrate that the engineered tubes enabled selective uni- and bidirectional fluid transport; nearly eliminated adhesion and growth of common pathogenic bacteria, blood, and cells; and prevented tissue ingrowth. The engineered tubes also enabled complete eardrum healing and hearing preservation and exhibited more efficient and rapid antibiotic delivery to the middle ear in healthy chinchillas compared with current tympanostomy tubes, without resulting in ototoxicity at up to 24 weeks. The design principle and optimization algorithm presented here may enable tubes to be customized for a wide range of patient needs.

     
    more » « less
  5. Introduction

    Chronic lung infection due to bacterial biofilms is one of the leading causes of mortality in cystic fibrosis (CF) patients. Among many species colonizing the lung airways,Pseudomonas aeruginosaandStaphylococcus aureusare two virulent pathogens involved in mechanically robust biofilms that are difficult to eradicate using airway clearance techniques like lung lavage. To remove such biological materials, glycoside hydrolase-based compounds are commonly employed for targeting and breaking down the biofilm matrix, and subsequently increasing cell susceptibility to antibiotics.

    Materials and methods

    In this study, we evaluate the effects of N-acetyl cysteine (NAC) and Cysteamine (CYST) in disrupting interfacial bacterial films, targeting different components of the extracellular polymeric substances (EPS). We characterize the mechanics and structural integrity of the interfacial bacterial films using pendant drop elastometry and scanning electron microscopy.

    Results and discussion

    Our results show that the film architectures are compromised by treatment with disrupting agents for 6 h, which reduces film elasticity significantly. These effects are profound in the wild type and mucoidP. aeruginosa, compared toS. aureus. We further assess the effects of competition and cooperation betweenS. aureusandP. aeruginosaon the mechanics of composite interfacial films. Films ofS. aureusand wild-typeP. aeruginosacocultures lose mechanical strength while those ofS. aureusand mucoidP. aeruginosaexhibit improved storage modulus. Treatment with NAC and CYST reduces the elastic property of both composite films, owing to the drugs’ ability to disintegrate their EPS matrix. Overall, our results provide new insights into methods for assessing the efficacy of mucolytic agents against interfacial biofilms relevant to cystic fibrosis infection.

     
    more » « less