skip to main content


Title: Is non-statistical dissociation a general feature of guanine–cytosine base-pair ions? Collision-induced dissociation of a protonated 9-methylguanine–1-methylcytosine Watson–Crick base pair, and comparison with its deprotonated and radical cation analogues
A guided-ion beam tandem mass spectrometric study was performed on collision-induced dissociation (CID) of a protonated 9-methylguanine–1-methylcytosine Watson–Crick base pair (designated as WC-[9MG·1MC + H] + ), from which dissociation pathways and dissociation energies were determined. Electronic structure calculations at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory were used to identify product structures and delineate reaction mechanisms. Intra-base-pair proton transfer (PT) of WC-[9MG·1MC + H] + results in conventional base-pair conformations that consist of hydrogen-bonded [9MG + H] + and 1MC and proton-transferred conformations that are formed by PT from the N1 of [9MG + H] + to the N3′ of 1MC. Two types of conformers were distinguished by CID in which the conventional conformers produced [9MG + H] + product ions whereas the proton-transferred conformers produced [1MC + H] + . The conventional conformers have a higher population (99.8%) and lower dissociation energy than the proton-transferred counterparts. However, in contrast to what was expected from the statistical dissociation of the equilibrium base-pair conformational ensemble, the CID product ions of WC-[9MG·1MC + H] + were dominated by [1MC + H] + rather than [9MG + H] + . This finding, alongside the non-statistical CID reported for deprotonated guanine–cytosine (Lu et al. ; PCCP , 2016, 18 , 32222) and guanine–cytosine radical cation (Sun et al. ; PCCP , 2020, 22 , 14875), reinforces that non-statistical dissociation is a distinctive feature of singly-charged Watson–Crick guanine–cytosine base pairs. It implies that intra-base-pair PT facilitates the formation of proton-transferred conformers in these systems and the ensuing conformers have loose transition states for dissociation. The monohydrate of WC-[9MG·1MC + H] + preserves non-statistical CID kinetics and introduces collision-induced methanol elimination via the reaction of the water ligand with a methyl group.  more » « less
Award ID(s):
1856362
NSF-PAR ID:
10233527
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
43
ISSN:
1463-9076
Page Range / eLocation ID:
24986 to 25000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has been shown previously in protonated, deprotonated and ionized guanine–cytosine base pairs that intra-base pair proton transfer from the N1–H at the Watson–Crick edge of guanine to the complementary nucleobase prompts non-statistical dissociation of the base-pair system, and the dissociation of a proton-transferred base-pair structure is kinetically more favored than that of the starting, conventional base-pair structure. However, the fundamental chemistry underlying this anomalous and intriguing kinetics has not been completely revealed, which warrants the examination of more base-pair systems in different structural contexts in order to derive a generalized base-pair structure–kinetics correlation. The purpose of the present work is to expand the investigation to the non-canonical homodimeric and heterodimeric radical cations of 9-methylguanine (9MG) and 9-methyl-8-oxoguanine (9MOG), i.e. , [9MG·9MG]˙ + , [9MOG·9MG]˙ + and [9MOG·9MOG]˙ + . Experimentally, collision-induced dissociation tandem mass spectrometry coupled with an electrospray ionization (ESI) source was used for the formation of base-pair radical cations, followed by detection of dissociation product ions and cross sections in the collisions with Xe gas under single ion–molecule collision conditions and as a function of the center-of-mass collision energy. Computationally, density functional theory and coupled cluster theory were used to calculate and identify probable base-pair structures and intra-base pair proton transfer and hydrogen transfer reactions, followed by kinetics modeling to explore the properties of dissociation transition states and kinetic factors. The significance of this work is twofold: it provides insight into base-pair opening kinetics in three biologically-important, non-canonical systems upon oxidative and ionization damage; and it links non-statistical dissociation to intra-base pair proton-transfer originating from the N1–H at the Watson–Crick edge of 8-oxoguanine, enhancing understanding towards the base-pair fragmentation assisted by proton transfer. 
    more » « less
  2. null (Ed.)
    We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine–1-methylcytosine base pair (HG-[9MG·1MC + H] + ), which aims to address the mystery of the literature reported “anomaly” in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H] + (reported recently by Sun et al. ; Phys. Chem. Chem. Phys. , 2020, 22 , 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice–Ramsperger–Kassel–Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H] + over [9MG + H] + in the fragment ions of HG-[9MG·1MC + H] + . The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointed the origin of the statistical kinetics of HG-[9MG·1MC + H] + vs. the non-statistical behavior of WC-[9MG·1MC + H] + in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3′ of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e. , HG-[9MG·1MC + H] + ·H 2 O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H] + , secondary methanol elimination was observed via the S N 2 reaction of water with nucleobase methyl groups. 
    more » « less
  3. null (Ed.)
    A combined experimental and theoretical study is presented on the collision-induced dissociation (CID) of 9-methylguanine–1-methylcytosine base-pair radical cation (abbreviated as [9MG·1MC]˙ + ) and its monohydrate ([9MG·1MC]˙ + ·H 2 O) with Xe and Ar gases. Product ion mass spectra were measured as a function of collision energy using guided-ion beam tandem mass spectrometry, from which cross sections and threshold energies for various dissociation pathways were determined. Electronic structure calculations were performed at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory to identify product structures and map out reaction potential energy surfaces. [9MG·1MC]˙ + has two structures: a conventional structure 9MG˙ + ·1MC (population 87%) consisting of hydrogen-bonded 9-methylguanine radical cation and neutral 1-methylcytosine, and a proton-transferred structure [9MG − H]˙·[1MC + H] + (less stable, population 13%) formed by intra-base-pair proton transfer from the N1 of 9MG˙ + to the N3 of 1MC within 9MG˙ + ·1MC. The two structures have similar dissociation energies but can be distinguished in that 9MG˙ + ·1MC dissociates into 9MG˙ + and 1MC whereas [9MG – H]˙·[1MC + H] + dissociates into neutral [9MG – H]˙ radical and protonated [1MC + H] + . An intriguing finding is that, in both Xe- and Ar-induced CID of [9MG·1MC]˙ + , product ions were overwhelmingly dominated by [1MC + H] + , which is contrary to product distributions predicted using a statistical reaction model. Monohydration of [9MG·1MC]˙ + reversed the populations of the conventional structure (43%) vs. the proton-transferred structure (57%) and induced new reactions upon collisional activation, of which intra-base-pair hydrogen transfer produced [9MG + H] + and the reaction of the water ligand with a methyl group in [9MG·1MC]˙ + led to methanol elimination from [9MG·1MC]˙ + ·H 2 O. 
    more » « less
  4. Abstract

    8‐Oxoguanosine is the most common oxidatively generated base damage and pairs with complementary cytidine within duplex DNA. The 8‐oxoguanosine−cytidine lesion, if not recognized and removed, not only leads to G‐to‐T transversion mutations but renders the base pair being more vulnerable to the ionizing radiation and singlet oxygen (1O2) damage. Herein, reaction dynamics of a prototype Watson−Crick base pair [9MOG ⋅ 1MC]⋅+, consisting of 9‐methyl‐8‐oxoguanine radical cation (9MOG⋅+) and 1‐methylcystosine (1MC), was examined using mass spectrometry coupled with electrospray ionization. We first detected base‐pair dissociation in collisions with the Xe gas, which provided insight into intra‐base pair proton transfer of 9MOG⋅+ ⋅ 1MC[9MOG − HN1]⋅ ⋅ [1MC+HN3′]+and subsequent non‐statistical base‐pair separation. We then measured the reaction of [9MOG ⋅ 1MC]⋅+with1O2, revealing the two most probable pathways, C5‐O2addition and HN7‐abstraction at 9MOG. Reactions were entangled with the two forms of 9MOG radicals and base‐pair structures as well as multi‐configurations between open‐shell radicals and1O2(that has a mixed singlet/triplet character). These were disentangled by utilizing approximately spin‐projected density functional theory, coupled‐cluster theory and multi‐referential electronic structure modeling. The work delineated base‐pair structural context effects and determined relative reactivity toward1O2as [9MOG − H]⋅>9MOG⋅+>[9MOG − HN1]⋅ ⋅ [1MC+HN3′]+≥9MOG⋅+ ⋅ 1MC.

     
    more » « less
  5. In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)–thymine (T), adenine (A)–uracil (U) and guanine (G)–cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N–H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O–H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C–H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C–H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N–H⋯N bond and the C–H⋯O bonds, and at the same time decreases the strength of the N–H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs. 
    more » « less