Abstract Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelidPristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such asvasa,piwiandnanoshomologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, inpiwi+cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories frompiwi+cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that apiwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.
more »
« less
Interphase Chromatin Undergoes a Local Sol-Gel Transition upon Cell Differentiation
Cell differentiation, the process by which stem cells become specialized cells, is associated with chromatin reorganization inside the cell nucleus. Here, we measure the chromatin distribution and dynamics in embryonic stem cells in vivo before and after differentiation. We find that undifferentiated chromatin is less compact, more homogeneous, and more dynamic than differentiated chromatin. Furthermore, we present a noninvasive rheological analysis using intrinsic chromatin dynamics, which reveals that undifferentiated chromatin behaves like a Maxwell fluid, while differentiated chromatin shows a coexistence of fluidlike (sol) and solidlike (gel) phases. Our data suggest that chromatin undergoes a local sol-gel transition upon cell differentiation, corresponding to the formation of the more dense and transcriptionally inactive heterochromatin.
more »
« less
- PAR ID:
- 10233627
- Date Published:
- Journal Name:
- Physical review letters
- Volume:
- 126
- ISSN:
- 1092-0145
- Page Range / eLocation ID:
- 228101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Undifferentiated neural stem and progenitor cells (NSPCs) encounter extracellular signals that bind plasma membrane proteins and influence differentiation. Membrane proteins are regulated by N-linked glycosylation, making it possible that glycosylation plays a critical role in cell differentiation. We assessed enzymes that control N-glycosylation in NSPCs and found that loss of the enzyme responsible for generating β1,6-branched N-glycans, N-acetylglucosaminyltransferase V (MGAT5), led to specific changes in NSPC differentiation in vitro and in vivo. Mgat5 homozygous null NSPCs in culture formed more neurons and fewer astrocytes compared with wild-type controls. In the brain cerebral cortex, loss of MGAT5 caused accelerated neuronal differentiation. Rapid neuronal differentiation led to depletion of cells in the NSPC niche, resulting in a shift in cortical neuron layers in Mgat5 null mice. Glycosylation enzyme MGAT5 plays a critical and previously unrecognized role in cell differentiation and early brain development.more » « less
-
The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra , including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris , an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type–specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.more » « less
-
During the evolution of multicellularity, the unit of selection transitions from single cells to integrated multicellular cell groups, necessitating the evolution of group-level traits such as somatic differentiation. However, the processes involved in this change in units of selection are poorly understood. We propose that the evolution of soma in the volvocine algae included an intermediate step involving the plastic development of somatic-like cells. We show thatEudorina elegans,a multicellular volvocine algae species previously thought to be undifferentiated, can develop somatic-like cells following environmental stress (i.e. cold shock). These cells resemble obligate soma in closely related species. We find that somatic-like cells can differentiate directly from cold-shocked cells. This differentiation is a cell-level trait, and the differentiated colony phenotype is a cross-level by-product of cell-level processes. The offspring of cold-shocked colonies also develop somatic-like cells. Since these cells were not directly exposed to the stressor, their differentiation was regulated during group development. Consequently, they are a true group-level trait and not a by-product of cell-level traits. We argue that group-level traits, such as obligate somatic differentiation, can originate through plasticity and that cross-level by-products may be an intermediate step in the evolution of group-level traits.more » « less
-
Stem cells show excellent potential in the field of tissue engineering and regenerative medicine based on their excellent capability to not only self-renew but also differentiate into a specialized cell type of interest. However, the lack of a non-destructive monitoring system makes it challenging to identify and characterize differentiated cells before their transplantation without compromising cell viability. Thus, the development of a non-destructive monitoring method for analyzing cell function is highly desired and can significantly benefit stem cell-based therapies. Recently, nanomaterial-based scaffolds ( e.g. , nanoarrays) have made possible considerable advances in controlling the differentiation of stem cells and characterization of the differentiation status sensitively in real time. This review provides a selective overview of the recent progress in the synthesis methods of nanoarrays and their applications in controlling stem cell fate and monitoring live cell functions electrochemically. We believe that the topics discussed in this review can provide brief and concise guidelines for the development of novel nanoarrays and promote the interest in live cell study applications. A method which can not only control but also monitor stem cell fate and function will be a promising technology that can accelerate stem cell therapies.more » « less
An official website of the United States government

