The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA—the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.
more »
« less
This content will become publicly available on March 19, 2026
Plasticity and the evolution of group-level regulation of cellular differentiation in the volvocine algae
During the evolution of multicellularity, the unit of selection transitions from single cells to integrated multicellular cell groups, necessitating the evolution of group-level traits such as somatic differentiation. However, the processes involved in this change in units of selection are poorly understood. We propose that the evolution of soma in the volvocine algae included an intermediate step involving the plastic development of somatic-like cells. We show thatEudorina elegans,a multicellular volvocine algae species previously thought to be undifferentiated, can develop somatic-like cells following environmental stress (i.e. cold shock). These cells resemble obligate soma in closely related species. We find that somatic-like cells can differentiate directly from cold-shocked cells. This differentiation is a cell-level trait, and the differentiated colony phenotype is a cross-level by-product of cell-level processes. The offspring of cold-shocked colonies also develop somatic-like cells. Since these cells were not directly exposed to the stressor, their differentiation was regulated during group development. Consequently, they are a true group-level trait and not a by-product of cell-level traits. We argue that group-level traits, such as obligate somatic differentiation, can originate through plasticity and that cross-level by-products may be an intermediate step in the evolution of group-level traits.
more »
« less
- Award ID(s):
- 2029999
- PAR ID:
- 10607871
- Publisher / Repository:
- Proc. R. Soc. B.
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 292
- Issue:
- 2043
- ISSN:
- 1471-2954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The transition of life from single cells to more complex multicellular forms has occurred at least two dozen times among eukaryotes and is one of the major evolutionary transitions, but the early steps that enabled multicellular life to evolve and thrive remain poorly understood. Volvocine green algae are a taxonomic group that is uniquely suited to investigating the step-wise acquisition of multicellular organization. The multicellular volvocine species Volvox carteri exhibits many hallmarks of complex multicellularity including complete germ-soma division of labor, asymmetric cell divisions, coordinated tissue-level morphogenesis, and dimorphic sexes-none of which have obvious analogs in its closest unicellular relative, the model alga Chlamydomonas reinhardtii. Here, I summarize some of the key questions and areas of study that are being addressed with Volvox carteri and how increasing genomic information and methodologies for volvocine algae are opening up the entire group as an integrated experimental system for exploring the evolution of multicellularity and more.more » « less
-
The evolution of multicellularity is a major evolutionary transition that underlies the radiation of many species in all domains of life, especially in eukaryotes. The volvocine green algae are an unconventional model system that holds great promise in the field given its genetic tractability, late transition to multicellularity, and phenotypic diversity. Multiple efforts at linking multicellularity-related developmental landmarks to key molecular changes, especially at the genome level, have provided key insights into the molecular innovations or lack thereof that underlie multicellularity. Twelve developmental changes have been proposed to explain the evolution of complex differentiated multicellularity in the volvocine algae. Co-option of key genes, such as cell cycle and developmental regulators has been observed, but with few exceptions, known co-option events do not seem to coincide with most developmental features observed in multicellular volvocines. The apparent lack of “master multicellularity genes” combined with no apparent correlation between gene gains for developmental processes suggest the possibility that many multicellular traits might be the product gene-regulatory and functional innovations; in other words, multicellularity can arise from shared genomic repertoires that undergo regulatory and functional overhauls.more » « less
-
Abstract The evolution of multicellularity represents a major transition in life’s history, enabling the rise of complex organisms. Multicellular groups can evolve through multiple developmental modes, but a common step is the formation of permanent cell–cell attachments after division. The characteristics of the multicellular morphology that emerges have profound consequences for the subsequent evolution of a nascent multicellular lineage, but little prior work has investigated these dynamics directly. Here, we examine a widespread yet understudied emergent multicellular morphology: cuboidal packing. Extinct and extant multicellular organisms across the tree of life have evolved to form groups in which spherical cells divide but remain attached, forming approximately cubic subunits. To experimentally investigate the evolution of cuboidal cell packing, we used settling selection to favor the evolution of simple multicellularity in unicellular, spherical Schizosaccharomyces pombe yeast. Multicellular clusters with cuboidal organization rapidly evolved, displacing the unicellular ancestor. These clusters displayed key hallmarks of an evolutionary transition in individuality: groups possess an emergent life cycle driven by physical fracture, group size is heritable, and they respond to group-level selection via multicellular adaptation. In 2 out of 5 lineages, group formation was driven by mutations in the ace2 gene, preventing daughter cell separation after division. Remarkably, ace2 mutations also underlie the transition to multicellularity in Saccharomyces cerevisiae and Candida glabrata, lineages that last shared a common ancestor >300 million years ago. Our results provide insight into the evolution of cuboidal cell packing, an understudied multicellular morphology, and highlight the deeply convergent potential for a transition to multicellular individuality within fungi.more » « less
-
null (Ed.)The evolution of multicellularity was a major transition in evolution and set the stage for unprecedented increases in complexity, especially in land plants and animals. Here, we explore the genetics underlying a de novo origin of multicellularity in a microbial evolution experiment carried out on the green alga Chlamydomonas reinhardtii . We show that large-scale changes in gene expression underlie the transition to a multicellular life cycle. Among these, changes to genes involved in cell cycle and reproductive processes were overrepresented, as were changes to C. reinhardtii -specific and volvocine-specific genes. These results suggest that the genetic basis for the experimental evolution of multicellularity in C. reinhardtii has both lineage-specific and shared features, and that the shared features have more in common with C. reinhardtii 's relatives among the volvocine algae than with other multicellular green algae or land plants.more » « less