Psychological research has demonstrated that as we experience a story several features affect the salience of its events in memory. These features correspond to who? where? when? how? and why? questions about those events. Computational models of salience have been used in interactive narratives to measure which events people most easily remember from the past and which they expect more readily from the future. We use three example domains to show that events in sequences that are solutions to narrative planning problems are generally more salient with each other, and events in non-solution sequences are less salient with each other. This means that measuring the salience of a sequence of actions during planning can serve as an efficient cost function to improve the speed, and perhaps also the quality, of a narrative planner.
more »
« less
Generating Explorable Narrative Spaces with Answer Set Programming
Previous approaches to narrative generation have required a new planner implementation for each set of constraints deemed relevant to the narrative domain, each consisting of thousands of lines of code and supporting one primary mode of interaction: fully specifying a domain and problem, and receiving a plan as output. We present a lightweight, flexible narrative planner written with Answer Set Programming, designed specifically to support constraint-based narrative generation, show how it generalizes previous approaches, and show how it can be easily extended with notions of thematic plot schema such as “betrayal.” Finally, we demonstrate how the ASP model can be explored through interactive question answering, where answers take the form of generated narratives. In the long term, we intend this work to support understanding of complex rule systems through interactive exploration.
more »
« less
- Award ID(s):
- 1846122
- PAR ID:
- 10233629
- Editor(s):
- Lelis, Levi; Thue, David
- Date Published:
- Journal Name:
- Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2334-0924
- Page Range / eLocation ID:
- 45-51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Creating engaging interactive story-based experiences dynamically responding to individual player choices poses significant challenges for narrative-centered games. Recent advances in pre-trained large language models (LLMs) have the potential to revolutionize procedural content generation for narrative-centered games. Historically, interactive narrative generation has specified pivotal events in the storyline, often utilizing planning-based approaches toward achieving narrative coherence and maintaining the story arc. However, manual authorship is typically used to create detail and variety in non-player character (NPC) interaction to specify and instantiate plot events. This paper proposes SCENECRAFT, a narrative scene generation framework that automates NPC interaction crucial to unfolding plot events. SCENECRAFT interprets natural language instructions about scene objectives, NPC traits, location, and narrative variations. It then employs large language models to generate game scenes aligned with authorial intent. It generates branching conversation paths that adapt to player choices while adhering to the author’s interaction goals. LLMs generate interaction scripts, semantically extract character emotions and gestures to align with the script, and convert dialogues into a game scripting language. The generated script can then be played utilizing an existing narrative-centered game framework. Through empirical evaluation using automated and human assessments, we demonstrate SCENECRAFT’s effectiveness in creating narrative experiences based on creativity, adaptability, and alignment with intended author instructions.more » « less
-
Narrative planners generate sequences of actions that represent story plots given a story domain model. This is a useful way to create branching stories for interactive narrative systems that maintain logical consistency across multiple storylines with different content. There is a need for story comparison techniques that can enable systems like experience managers and domain authoring tools to reason about similarities and differences between multiple stories or branches. We present an algorithm for summarizing narrative plans as numeric vectors based on a cognitive model of human story perception. The vectors encode important story information and can be compared using standard distance functions to quantify the overall semantic difference between two stories. We show that this distance metric is highly accurate based on human annotations of story similarity, and compare it to several alternative approaches. We also explore variations of our method in an attempt to broaden its applicability to other types of story systems.more » « less
-
Pedagogical planners can provide adaptive support to students in narrative-centered learning environments by dynamically scaffolding student learning and tailoring problem scenarios. Reinforcement learning (RL) is frequently used for pedagogical planning in narrative-centered learning environments. However, RL-based pedagogical planning raises significant challenges due to the scarcity of data for training RL policies. Most prior work has relied on limited-size datasets and offline RL techniques for policy learning. Unfortunately, offline RL techniques do not support on-demand exploration and evaluation, which can adversely impact the quality of induced policies. To address the limitation of data scarcity and offline RL, we propose INSIGHT, an online RL framework for training data-driven pedagogical policies that optimize student learning in narrative-centered learning environments. The INSIGHT framework consists of three components: a narrative-centered learning environment simulator, a simulated student agent, and an RL-based pedagogical planner agent, which uses a reward metric that is associated with effective student learning processes. The framework enables the generation of synthetic data for on-demand exploration and evaluation of RL-based pedagogical planning. We have implemented INSIGHT with OpenAI Gym for a narrative-centered learning environment testbed with rule-based simulated student agents and a deep Q-learning-based pedagogical planner. Our results show that online deep RL algorithms can induce near-optimal pedagogical policies in the INSIGHT framework, while offline deep RL algorithms only find suboptimal policies even with large amounts of data.more » « less
-
Effective planning in the real world requires not only world knowledge, but the ability to leverage that knowledge to build the right representation of the task at hand. Decades of hierarchical planning techniques have used domain-specific temporal action abstractions to support efficient and accurate planning, almost always relying on human priors and domain knowledge to decompose hard tasks into smaller subproblems appropriate for a goal or set of goals. This paper describes Ada (Action Domain Acquisition), a framework for automatically constructing task-specific planning representations using task-general background knowledge from language models (LMs). Starting with a general-purpose hierarchical planner and a low-level goal-conditioned policy, Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks. On two language-guided interactive planning benchmarks (Mini Minecraft and ALFRED Household Tasks), Ada strongly outperforms other approaches that use LMs for sequential decision- making, offering more accurate plans and better generalization to complex tasks.more » « less
An official website of the United States government

