Drought is a major abiotic stress limiting agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere. How these changes ultimately affect plant health remains elusive. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key root-associated microbes that robustly affect drought-stressed plant phenotypes. Fifty-three
- Editors:
- Fischer, Reinhard
- Award ID(s):
- 1917270
- Publication Date:
- NSF-PAR ID:
- 10233746
- Journal Name:
- mSphere
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2379-5042
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Arabidopsis -associated bacteria were applied to sorghum seeds and their effect on root growth was monitored. TwoArthrobacter strains caused root growth inhibition (RGI) inArabidopsis and sorghum. In the context of synthetic communities,Variovorax strains were able to protect plants fromArthrobacter -caused RGI. As a transitional system, high-throughput phenotyping was used to test the synthetic communities. During drought stress, plants colonized byArthrobacter had reduced growth and leaf water content. Plants colonized by bothArthrobacter andVariovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across drought conditions. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a novel method and were able to observe the negative correlation between the abundance ofArthrobacter and plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list ofmore » -
Strategies to reduce crop losses due to drought are needed as climate variability affects agricultural productivity. Wheat (Triticum aestivum var. Juniper) growth in a nutrient-sufficient, solid growth matrix containing varied doses of CuO, ZnO, and SiO2 nanoparticles (NPs) was used to evaluate NP mitigation of drought stress. NP amendments were at fertilizer levels, with maxima of 30 Cu, 20 Zn, and 200 Si (mg metal/kg matrix). Seeds of this drought-tolerant cultivar were inoculated with Pseudomonas chlororaphis O6 (PcO6) to provide a protective root microbiome. An 8 day drought imposed on 14 day-old wheat seedlings decreased shoot and root mass, shoot water content, and the quantum yield of photosystem II when compared to watered plants. PcO6 root colonization was not impaired by drought or NPs. A dose-dependent increase in the Cu, Zn, and Si from the NPs was observed from analysis of the rhizosphere solution, and this process was not affected by drought. Consequently, fertilizer concentrations of the NPs did not further improve drought tolerance in wheat seedlings under the growth conditions of adequate mineral nutrition and the presence of a beneficial microbiome. These findings suggest that potential NP benefits in promoting plant drought tolerance occur only under certain environmental conditions.
-
Abstract Although microbes influence plant growth, little is known about the impact of microbial diversity on plant fitness trade-offs, intraspecific-interactions, and soil nutrient dynamics in the context of biodiversity-ecosystem functioning (BEF) research. The BEF theory states that higher species richness can enhance ecosystem functioning. Thus, we hypothesize that rhizobacterial species richness will alter sorghum (
Sorghum bicolor L.) growth, soil nutrient dynamics and interactions (antagonism or synergism) in a nutrient-poor greenhouse soil. Using six rhizobacterial species in a BEF experiment, we tested the impact of a species richness gradient (0, 1, 3, 5 or 6 species per community) on plant growth, nutrient assimilation, and soil nutrient dynamics via seed-inoculation. Our experiment included, one un-inoculated control, six rhizobacterial monoculture(Pseudomonas poae, Pseudomonas sp., Bacillus pumilus., Pantoea agglomerance., Microbacterium sp., andSerratia marcescens ), and their nine mixture treatments in triplicate (48). Rhizobacterial species richness enhanced per pot above- or below-ground dry mass. However, the per plant growth and plant nutrient assimilation declined, most likely, due to microbial-driven competitive interactions among sorghum plants. But nevertheless, some rhizobacterial monoculture and mixture treatments improved per plant (shoot and root) growth and nutrient assimilation as well. Soil nutrient contents were mostly lower at higher plant-associated rhizobacterial diversity; among these, the soil Znmore » -
Abstract Background and Aims When plant communities are exposed to herbicide ‘drift’, wherein particles containing the active ingredient travel off-target, interspecific variation in resistance or tolerance may scale up to affect community dynamics. In turn, these alterations could threaten the diversity and stability of agro-ecosystems. We investigated the effects of herbicide drift on the growth and reproduction of 25 wild plant species to make predictions about the consequences of drift exposure on plant-plant interactions and the broader ecological community. Methods We exposed potted plants from species that commonly occur in agricultural areas to a drift-level dose of the widely used herbicide dicamba or a control solution in the glasshouse. We evaluated species-level variation in resistance and tolerance for vegetative and floral traits. We assessed community-level impacts of drift by comparing species evenness and flowering networks of glasshouse synthetic communities comprised of drift-exposed and control plants. Key Results Species varied significantly in resistance and tolerance to dicamba drift: some were negatively impacted while others showed overcompensatory responses. Species also differed in the way they deployed flowers over time following drift exposure. While drift had negligeable effects on community evenness based on vegetative biomass, it caused salient differences in the structure ofmore »
-
Plant growth-promoting bacteria (PGPB) can enhance plant health by facilitating nutrient uptake, nitrogen fixation, protection from pathogens, stress tolerance and/or boosting plant productivity. The genetic determinants that drive the plant–bacteria association remain understudied. To identify genetic loci highly correlated with traits responsive to PGPB, we performed a genome-wide association study (GWAS) using an Arabidopsis thaliana population treated with Azoarcus olearius DQS-4T. Phenotypically, the 305 Arabidopsis accessions tested responded differently to bacterial treatment by improving, inhibiting, or not affecting root system or shoot traits. GWA mapping analysis identified several predicted loci associated with primary root length or root fresh weight. Two statistical analyses were performed to narrow down potential gene candidates followed by haplotype block analysis, resulting in the identification of 11 loci associated with the responsiveness of Arabidopsis root fresh weight to bacterial inoculation. Our results showed considerable variation in the ability of plants to respond to inoculation by A. olearius DQS-4T while revealing considerable complexity regarding statistically associated loci with the growth traits measured. This investigation is a promising starting point for sustainable breeding strategies for future cropping practices that may employ beneficial microbes and/or modifications of the root microbiome.